Citation: | Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001. doi: 10.11884/HPLPB202133.200173 |
[1] |
Committee on High Energy Density Plasma Physics, Plasma Science Committee Board on Physics and Astronomoy Division on Engineering and Physical Science. Frontiers in high energy density physics[M]. Washington D C: The National Academies Press, 2001.
|
[2] |
Turner M. Connecting quarks with the COSMOS: Eleven science questions for the new century[M]. Washington D C: The National Academies Press, 2003.
|
[3] |
Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Rev Mod Phys, 2006, 78: 755-807. doi: 10.1103/RevModPhys.78.755
|
[4] |
Drake R P. High-energy-density physics: Fundamentals, Inertial Fusion and Experimental Astrophysics[M]. New York: Springer, 2006.
|
[5] |
Moses E I. Ignition on the National Ignition Facility: A path towards inertial fusion energy[J]. Nucl Fusion, 2009, 49: 104022. doi: 10.1088/0029-5515/49/10/104022
|
[6] |
Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Phys Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
|
[7] |
Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nat Phys, 2016, 12: 800. doi: 10.1038/nphys3720
|
[8] |
Hurricane O A, Callahan D A, Springer P T, et al. Beyond alpha-heating: Driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility[J]. Plasma Phys Controlled Fusion, 2019, 61: 014033. doi: 10.1088/1361-6587/aaed71
|
[9] |
Hurricane O A, Springer P T, Patel P K, et al. Approaching a burning plasma on the NIF[J]. Phys Plasmas, 2019, 26: 052704. doi: 10.1063/1.5087256
|
[10] |
Döppner T, Hinkel D E, Jarrott L C, et al. Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility[J]. PhysPlasmas, 2020, 27: 042701.
|
[11] |
Boehly T R, Brown D L, Craxton R S, et al. Initial performance results of the OMEGA laser system[J]. Opt Commun, 1997, 133: 495-506. doi: 10.1016/S0030-4018(96)00325-2
|
[12] |
Miquel J L, Prene E. LMJ & PETAL status and program overview[J]. Nucl Fusion, 2019, 59: 032005. doi: 10.1088/1741-4326/aac343
|
[13] |
Rozanov V, Guskov S Y, Vergunova G A, et al. Direct drive targets for the megajoule installation UFL-2M[R]. J Phys: Conf Ser, 2016, 688: 012095.
|
[14] |
Yamanaka C, Kato Y, Izama Y, et al. Nd-doped phosphate glass laser systems for laser-fusion research[J]. IEEE J Quantum Electron, 1981, 9: 1639-1649.
|
[15] |
Lin Z, Deng X, Fan D, et al. SG-Ⅱlaser elementary research and precision SG-Ⅱprogram[J]. Fusion Engineering and Design, 1999, 44: 61-66. doi: 10.1016/S0920-3796(98)00308-1
|
[16] |
Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Phys Rev Lett, 1998, 81: 4883-4886. doi: 10.1103/PhysRevLett.81.4883
|
[17] |
Jones M C, Ampleford D J, Cuneo M E, et al. X-ray power and yield measurements at the refurbished Z machine[J]. Rev Sci Instrum, 2014, 85: 083501. doi: 10.1063/1.4891316
|
[18] |
Deng J J, Xie W P, Feng S P, et al. From concept to reality – A review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1: 48-58. doi: 10.1016/j.mre.2016.01.004
|
[19] |
温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012.
Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics[M].Beijing: National Defense Industry Press, 2012.
|
[20] |
江少恩, 丁永坤, 缪文勇, 等. 我国激光惯性约束聚变实验研究进展[J]. 中国科学: 物理力学天文学, 2009, 39(11):1571-1583. (Jiang Shaoen, Ding Yongkun, Miao Wenyong, et al. Recent progress of inertial confinement fusion experiments in China[J]. Sci China Phys Mech Astron, 2009, 39(11): 1571-1583
|
[21] |
王峰, 江少恩. 神光装置实验和诊断技术进展专题·编者按[J]. 中国科学: 物理学力学天文学, 2018, 48:065201. (Wang Feng, Jiang Shaoen. Special topic: Progress of experimental and diagnostical technique based on Shenguang series laser facility[J]. Sci China Phys Mech Astron, 2018, 48: 065201 doi: 10.1360/SSPMA2018-00095
|
[22] |
Zimmerman G, Kershaw D, Bailey D, et al. The Lasnex code for inertial confinement fusion[R]. UCRL-80169, 1977.
|
[23] |
Stone G F, Spragge M R, Rivers C J, et al. Fabrication and testing of gas-filled targets for large-scale plama experiments on NOVA[R]. UCRL-LR-105821-95-3, 1995.
|
[24] |
Radha P B, Goncharov V N, Collins T J B, et al. Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA[J]. Phys Plasmas, 2005, 12: 032702. doi: 10.1063/1.1857530
|
[25] |
He X T, Zhang W Y. Inertial fusion research in China[J]. Eur Phys J D, 2007, 44: 227-231. doi: 10.1140/epjd/e2007-00005-1
|
[26] |
Pei Wenbing. The construction of simulation algorithms for laser fusion[J]. Commun Comput Phys, 2007, 2: 255-270.
|
[27] |
Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Nature, 1883, 14: 170-177.
|
[28] |
Taylor G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[J]. I Proc R Soc London A, 1950, 201: 192-196. doi: 10.1098/rspa.1950.0052
|
[29] |
Richtmyer D. Taylor instability in shock acceleration of compressible fluids[J]. Comm Pure Appl Math, 1960, 13: 297-319. doi: 10.1002/cpa.3160130207
|
[30] |
Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynam, 1969, 4: 101-108.
|
[31] |
Kelvin L. Hydrokinetic solutions and observations, on the motion of free solids through a liquid, mathematical and physical papers IV[M]. Cambridge: Hydrodynamics and General Dynamics, 1910.
|
[32] |
Von Helmholtz H. On the discontinuous movements of fluids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1868, 36: 337-346. doi: 10.1080/14786446808640073
|
[33] |
Bell G I. Taylor instability on cylinders and spheres in the small amplitude approximation[R]. LA-1321, 1951.
|
[34] |
Plesset M S. On the stability of fluid flows with spherical symmetry[J]. J Appl Phys, 1954, 25: 96-98. doi: 10.1063/1.1721529
|
[35] |
Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. London: Oxford University, 1961.
|
[36] |
Drazin P G, Reid W H. Hydrodynamic stability[M]. Cambridge: Cambridge University Press, 2004.
|
[37] |
Bateman G. Magnetohydrodynamic instability[M]. Beijing: Atomic Energy Press, 1982.
|
[38] |
Ma T, Patel P K, Izumi N, et al. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions[J]. Phys Rev Lett, 2013, 111: 085004. doi: 10.1103/PhysRevLett.111.085004
|
[39] |
Edwards M J, Patel P K, Lindl J D, et al. Progress towards ignition on the National Ignition Facility[J]. Phys Plasmas, 2013, 20: 070501. doi: 10.1063/1.4816115
|
[40] |
Ma T, Hurricane O A, Callahan D A, et al. Thin shell, high velocity inertial confinement fusion implosions on the National Ignition Facility[J]. Phys Rev Lett, 2015, 114: 145004. doi: 10.1103/PhysRevLett.114.145004
|
[41] |
Remington B, Arnett D, Drake P, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284: 1488-1493. doi: 10.1126/science.284.5419.1488
|
[42] |
李宗伟, 肖兴华. 天体物理学[M]. 北京: 高等教育出版社, 2001.
Li Zongwei, Xiao Xinghua. Astrophysics[M]. Beijing: Higher Education Press, 2001
|
[43] |
黄润乾. 恒星物理[M]. 北京: 中国科学出版社, 1998.
Huang Runqian. Stellar Physics[M]. Science Press, 1998.
|
[44] |
王贻仁, 张锁春, 谢佐恒, 等. 超新星爆发机制和数值模拟[M]. 郑州: 河南科学技术出版社, 2003.
Wang Yiren, Zhang Shuochun, Xie Zuoheng. Supernova explosion mechanism and numerical simulation[M]. Zhengzhou: Henan Science and Technology Press, 2003
|
[45] |
徐仁新. 天体物理学导论[M]. 北京: 北京大学出版社, 2006.
Xu Renxin. Introduction to astrophysics[M]. Beijing: Peking University Press, 2006.
|
[46] |
Nomoto K, Yamaoka H, Pols O R, et al. A carbon–oxygen star as progenitor of the type Ic supernova 1994I[J]. Nature, 1994, 371: 227-229. doi: 10.1038/371227a0
|
[47] |
Kouveliotou C. Gamma ray bursts[J]. Science, 1997, 277: 1257-1258. doi: 10.1126/science.277.5330.1257
|
[48] |
Baron E. How big do stellar explosions get?[J]. Nature, 1998, 395: 635-636. doi: 10.1038/27067
|
[49] |
Iwamoto K, Mazzali P A, Nomoto K, et al. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998[J]. Nature, 1998, 395: 672-674. doi: 10.1038/27155
|
[50] |
Hasegawa H, Fujimoto M, Phan T-D, et al. Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices[J]. Nature, 2004, 430: 755-758. doi: 10.1038/nature02799
|
[51] |
Gamezo V N, Khokholv A M, Oran E S, et al. Thermonuclear supernovae: simulations of the deflagration stage and their implications[J]. Science, 2003, 299: 77-80. doi: 10.1126/science.1078129
|
[52] |
Dimonte G, Youngs D L, Dimits A, et al. A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration[J]. Phys Fluids, 2004, 16(5): 1668-1693. doi: 10.1063/1.1688328
|
[53] |
Zhou Y, Remington B A, Robey H F, et al. Progress in understanding turbulent mixing induced by Rayleigh–Taylor and Richtmyer–Meshkov instabilities[J]. Phy Plasmas, 2003, 10(5): 1883-1896. doi: 10.1063/1.1560923
|
[54] |
Zhou Y, Clark T T, Clark D S, et al. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities[J]. Phys Plasmas, 2019, 26: 080901. doi: 10.1063/1.5088745
|
[55] |
Marinak M M, Tipton R E, Landen O L, et al. Three-dimensional simulations of Nova high growth factor capsule implosion experiments[J]. Phys Plasmas, 1996, 3(5): 2070-2076. doi: 10.1063/1.872004
|
[56] |
Clark D S, Weber C R, Milovich J L, et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Phys Plasmas, 2016, 23: 056302. doi: 10.1063/1.4943527
|
[57] |
Clark D S, Weber C R, Milovich J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Phys Plasmas, 2019, 26: 050601. doi: 10.1063/1.5091449
|
[58] |
Clark D S, Weber C R, Kritcher A L, et al. Modeling and projecting implosion performance for the National Ignition Facility[J]. Nucl Fusion, 2019, 59: 032008. doi: 10.1088/1741-4326/aabcf7
|
[59] |
Weber C R, Clark D S, Cook A W, et al. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion[J]. Phys Plasmas, 2015, 22: 032702. doi: 10.1063/1.4914157
|
[60] |
Weber C R, Clark D S, Cook A W, et al. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation[J]. Phys Rev E, 2014, 89: 053106. doi: 10.1103/PhysRevE.89.053106
|
[61] |
Taylor S, Chittenden J P. Effects of perturbations and radial profiles on ignition of inertial confinement fusion hotspots[J]. Phys Plasmas, 2014, 21: 062701. doi: 10.1063/1.4879020
|
[62] |
Chittenden J P, Appelbe B D, Manke F, et al. Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions[J]. Phys Plasmas, 2016, 23: 052708. doi: 10.1063/1.4949523
|
[63] |
Woo K M, Betti R, Shvarts D, et al. Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions[J]. Phys Plasmas, 2018, 25: 052704. doi: 10.1063/1.5026706
|
[64] |
Haines B M, Grinstein F F, Fincke J R. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance[J]. Phy Rev E, 2014, 89: 053302. doi: 10.1103/PhysRevE.89.053302
|
[65] |
Haines B M, Olson R E, Sweet W, et al. Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions[J]. Phys Plasmas, 2019, 26: 012707. doi: 10.1063/1.5080262
|
[66] |
张维岩, 叶文华, 吴俊峰, 等. 激光间接驱动聚变内爆流体不稳定性研究[J]. 中国科学: 物理学力学天文学, 2014, 44:1-23. (Zhang Weiyan, Ye Wenhua, Wu Junfeng, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Sci Sin-Phys Mech Astron, 2014, 44: 1-23 doi: 10.1360/SSPMA2013-00039
|
[67] |
Wang L F, Ye W H, He X T, et al. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions[J]. Sci China-Phys Mech Astron, 2017, 60: 055201. doi: 10.1007/s11433-017-9016-x
|
[68] |
Casner A, Masse L, Delorme B, et al. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front[J]. Phys Plasmas, 2014, 21: 122702. doi: 10.1063/1.4903331
|
[69] |
Mailliet C, Bel E L, Ceurvorst L, et al. Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC[J]. Phys Plasmas, 2019, 26: 082703. doi: 10.1063/1.5110684
|
[70] |
Kline J L. Deconstructing integrated high energy density physics experiments into fundamental models for validatioin[R]. LA-UR-19-20544, 2019.
|
[71] |
Doss F W, LoomisE N, Welser-Sherrill L, et al. Instability, mixing, and transition to turbulence in a laser-driven counterflowing shear experiment[J]. Phys Plasmas, 2013, 20: 012707. doi: 10.1063/1.4789618
|
[72] |
Flippo K A, Kline J L, Doss F W, et al. Development of a big area back lighter for high energy density experiments[J]. Rev Sci Inst, 2014, 85: 093501. doi: 10.1063/1.4893349
|
[73] |
Robey H F, Miles A R, Hansen J F, et al. Laser-driven hydrodynamic experiments in the turbulent plasma regime: From Omega to NIF[R]. UCRL-JC-I 55300, 2003.
|
[74] |
Blue B E, Weber S V, Glendinning S G, et al. Experimental investigation of high-Mach-number 3D hydrodynamic jets at the National Ignition Facility[J]. Phys Rev Lett, 2005, 94: 095005. doi: 10.1103/PhysRevLett.94.095005
|
[75] |
Lanier N E, Barnes C W, Batha S H, et al. Multimode seeded Richtmyer–Meshkov mixing in a convergent, compressible, miscible plasma system[J]. Phys Plasmas, 2003, 10(5): 1816-1821. doi: 10.1063/1.1542886
|
[76] |
Pomraning G C. The equations of radiation hydrodynamics[M]. Oxford: Pergamon Press, 1973.
|
[77] |
Mihalas D, Mihalas B W. Foundations of radiation hydrodynamics[M]. Oxford: Oxford University Press, 1984.
|
[78] |
Castor J I. Radiation hydrodynamics[M]. Cambridge: Cambridge University Press, 2004.
|
[79] |
Toro E F. Riemann solvers and numerical methods for fluid dynamics[M]. Berlin: Springer, 1997.
|
[80] |
Hirt C W, Amsden AA, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. J Comput Phys, 1974, 14: 227-253. doi: 10.1016/0021-9991(74)90051-5
|
[81] |
Berger M, Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. J Comput Phys, 1984, 53: 484-512. doi: 10.1016/0021-9991(84)90073-1
|
[82] |
叶文华, 张维岩, 陈光南. 激光烧蚀瑞利-泰勒不稳定性模拟[J]. 强激光与粒子束, 1998, 10(3):403-408. (Ye Wenhua, Zhang Weiyan, Cheng Guangnan. Numerical simulation of laser ablative Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 1998, 10(3): 403-408
|
[83] |
Ye W H, Zhang W Y, He X T. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number[J]. Phys Rev E, 2002, 65: 057401. doi: 10.1103/PhysRevE.65.057401
|
[84] |
吴俊峰. 收缩几何中惯性约束聚变流体不稳定性的理论和数值模拟研究[D]. 北京: 中国工程物理研究院, 2003..
Wu Junfeng. Theoretic and numerical studies on hydrodynamic instabilities of flows in inertial confined fusion under convergent geometry[D]. Beijing: China Academy of Engineering Physics, 2003
|
[85] |
郁晓瑾, 叶文华, 吴俊峰. 直接驱动内爆点火的数值模拟研究[J]. 强激光与粒子束, 2006, 18(8):1297-1301. (Yu Xiaojin, Ye Wenhua, Wu Junfeng. Numerical simulation of direct-drive ICF ignition in spherical geometry[J]. High Power Laser and Particle Beams, 2006, 18(8): 1297-1301
|
[86] |
郁晓瑾, 吴俊峰, 叶文华. 激光非均匀性对内界面变形影响的研究[J]. 强激光与粒子束, 2007, 19(8):1283-1286. (Yu Xiaojin, Wu Junfeng, Ye Wenhua. Numerical simulation of effect of laser nonuniformity on interior interface[J]. High Power Laser and Particle Beams, 2007, 19(8): 1283-1286
|
[87] |
Wang L F, Xue C, Ye W H, et al. Destabilizing effect of density gradient on the Kelvin-Helmholtz instability[J]. Phys Plasmas, 2009, 16: 112104. doi: 10.1063/1.3255622
|
[88] |
Wang L F, Ye W H, Sheng Z M, et al. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime[J]. Phys Plasmas, 2010, 17: 122706. doi: 10.1063/1.3517606
|
[89] |
Wang L F, Ye W H, Don W S, et al. Formation of large-scale structures in the ablative Kelvin-Helmholtz instability[J]. Phys Plasmas, 2010, 17: 122308. doi: 10.1063/1.3524550
|
[90] |
Wang L F, Ye W H, He X T, et al. Formation of jet-like spikes from the ablative Rayleigh-Taylor instability[J]. Phys Plasmas, 2012, 19: 100701. doi: 10.1063/1.4759161
|
[91] |
Fan Z, Zhu S, Pei W, et al. Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target[J]. EPL, 2012, 99: 65003. doi: 10.1209/0295-5075/99/65003
|
[92] |
Fan Z F, He X T, Liu J, et al. A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion[J]. Phys Plasmas, 2014, 21: 100705. doi: 10.1063/1.4898682
|
[93] |
Wang L F, Ye W H, Wu J F, et al. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions[J]. Phys Plasmas, 2016, 23: 122702. doi: 10.1063/1.4971237
|
[94] |
Wang L F, Ye W H, Wu J F, et al. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions[J]. Phys Plasmas, 2016, 23: 052713. doi: 10.1063/1.4952636
|
[95] |
He X T, Li J W, Fan Z F, et al. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion[J]. Phys Plasmas, 2016, 23: 082706. doi: 10.1063/1.4960973
|
[96] |
Fan Z F, Liu Y Y, Liu B, et al. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments[J]. Matter and Radiat Extrem, 2017, 2: 3-8. doi: 10.1016/j.mre.2016.11.003
|
[97] |
Mo Zeyao, Zhang Aiqing, Cao Xiaolin, et al. JASMIN: A parallel software infrastructure for scientific computing[J]. Front Comput Sci China, 2010, 4(4): 480-488.
|
[98] |
刘青凯, 徐小文, 吴俊峰. 一种求解流体力学方程组的自适应显式时间积分算法及其应用[J]. 计算物理, 2011, 28(2):174-180. (Liu Qingkai, Xu Xiaowen, Wu Junfeng. An adaptive explicit time integration algorithm for hydrodynamic equations and application in ICF[J]. Chinese Journal of Computational Physics, 2011, 28(2): 174-180
|
[99] |
徐小文, 莫则尧, 刘青凯,等. 自适应结构网格上扩散方程隐式时间积分算法及应用[J]. 计算物理, 2012, 29(5):684-692. (Xu Xiaowen, Mo Zeyao, Liu Qingkai, et al. An implicit time-integration algorithm for diffusion equations with structured AMR and applications[J]. Chinese Journal of Computational Physics, 2012, 29(5): 684-692
|
[100] |
莫则尧, 张爱清, 曹小林, 等. 多介质辐射流体力学数值模拟中的并行计算研究[J]. 自然科学进展, 2006, 16(3):287-292. (Mo Zeyao, Zhang Aiqing, Cao Xiaolin, et al. Research on parallel computing in numerical simulation of multi-media radiation hydrodynamics[J]. Progress in Natural Science, 2006, 16(3): 287-292
|
[101] |
裴文兵, 朱少平. 激光聚变中的科学计算[J]. 物理, 2009, 38(8):559-568. (Pei Wenbing, Zhu Shaoping. Scientific calculation in laser fusion[J]. Physics, 2009, 38(8): 559-568
|
[102] |
Marvin L A. Subcell balance methods for radiative transfer on arbitrary grids[J]. Transport Theory and Statistical Physics, 1997, 26(4/5): 285-431.
|
[103] |
Morel J E. Diffusion-limit asymptotics of the transport equation, the P1/3 equations, and two flux-limited diffusion theories[J]. J Qunat Spectrosc Radiat Transfer, 2000, 5(65): 769-778.
|
[104] |
袁光伟, 杭旭登, 盛志强, 等. 辐射扩散计算方法若干研究进展[J]. 计算物理, 2009, 26(4):475-500. (Yuan Guangwei, Hang Xudeng, Sheng Zhiqiang, te al. Progress in numerical methods for radiation diffusion equations[J]. Chinese Journal of Computational Physics, 2009, 26(4): 475-500 doi: 10.3969/j.issn.1001-246X.2009.04.001
|
[105] |
Saad Y. Iterative methods for sparse linear systems[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2003.
|
[106] |
Baldwin C, Brown P N, Falgout R D, et al. Iterative linear solvers in a 2D radiation-hydrodynamics code: Methods and performance[J]. J Comput Phys, 1999, 154: 1-40.
|
[107] |
Yue Xiaoqiang, Xu Xiaowen, Shu Shi. JASMIN-based adaptive combined preconditioner for 2D radiation diffusion equations in ICF applications[J]. East Asian Journal on Applied Mathematics, 2017, 7(3): 495-507.
|
[108] |
Xu Xiaowen, Mo Zeyao. Algebraic interface based coarsening AMG preconditioner for multi-scale sparse matrices with applications to radiation hydrodynamics computation[J]. Numer Linear Algebra Appl, 2017, 24(2): e2078.
|
[109] |
Basov N G, Krokhin O N. Proceeding of the 3rd International Conference on Quantum Electronic[M]. New York: Columbia University Press, 1964.
|
[110] |
Dawson J M. On the production of plasma by giant pulse lasers[J]. Phys Fluid, 1964, 7: 981-987. doi: 10.1063/1.1711346
|
[111] |
王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 原子能科学技术, 1988, 22(1):7. (Wang Ganchang. A proposal of using high energy and high power laser to produce neutrons[J]. Atomic Energy Sci Tech, 1988, 22(1): 7
|
[112] |
Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications[J]. Nature, 1972, 239: 139-142. doi: 10.1038/239139a0
|
[113] |
Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion: Beam plasma interaction hydrodynamics, hot dense matter[M]. Oxford: Oxford University, 2004.
|
[114] |
张钧, 常铁强. 激光聚变靶物理基础[M]. 北京: 国防工业出版社, 2004.
Zhang Jun, Chang Tieqiang. Fundaments of the target physics for laser fusion[M]. Beijing: National Defense Industry Press, 2004.
|
[115] |
Kilkenny J D. Experimental results on hydrodynamic instabilities in laser-accelerated planar packages[J]. Phys Fluids B: Plasma Physics, 1990, 2: 1400-1404. doi: 10.1063/1.859563
|
[116] |
Remington B A, Weber S V, Haan S W, et al. Laser-driven hydrodynamic instability experiments[J]. Phys Fluids B: Plasma Physics, 1993, 5: 2589-2595. doi: 10.1063/1.860695
|
[117] |
Remington B A, Weber S V, Marinak M M, et al. Single-mode and multimode Rayleigh-Taylor experiments on Nova[J]. Phys Plasms, 1995, 2: 241-255. doi: 10.1063/1.871096
|
[118] |
Marinak M M, Remington B A, Weber S V, et al. Three-dimensional single mode Rayleigh-Taylor experiments on Nova[J]. Phys Rev Lett, 1995, 75: 3677-3680. doi: 10.1103/PhysRevLett.75.3677
|
[119] |
Hsing W W, Hoffman N M. Measurement of feedthrough and instability growth in radiation-driven cylindrical implosions[J]. Phys Rev Lett, 1997, 78: 3876-3879. doi: 10.1103/PhysRevLett.78.3876
|
[120] |
Glendinning S G, Colvin J, Haan S W, et al. Ablation front Rayleigh–Taylor growth experiments in spherically convergent geometry[J]. Phys Plasms, 2000, 7: 2033-2039. doi: 10.1063/1.874024
|
[121] |
Bradley D K, Braun D G, Glendinning S G, et al. Very-high-growth-factor planar ablative Rayleigh-Taylor experiments[J]. PhysPlasmas, 2007, 14: 056313.
|
[122] |
Smalyuk V A, Hu S X, Goncharov V N, et al. Systematic study of Rayleigh-Taylor growth in directly driven plastic targets in a laser-intensity range from ~2×1014 to 1.5×1015 W/cm2[J]. Phys Plasmas, 2008, 15: 082703. doi: 10.1063/1.2967899
|
[123] |
Sadot O, Smalyuk V A, Delettrez A, et al. Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability[J]. Phys Rev Lett, 2005, 95: 265001. doi: 10.1103/PhysRevLett.95.265001
|
[124] |
Loomis E N, Braun D, Batha S H, et al. Areal density evolution of isolated surface perturbations at the onset of X-ray ablation Richtmyer-Meshkov growth[J]. Phys Plasmas, 2011, 18: 092702. doi: 10.1063/1.3632083
|
[125] |
Desjardins T R, Di Stefanob C A, Day T, et al. A platform for thin-layer Richtmyer-Meshkov at OMEGA and the NIF[J]. High Energy Density Physics, 2019, 33: 100705. doi: 10.1016/j.hedp.2019.100705
|
[126] |
Smalyuk V A, Delettrez J A, Goncharov V N, et al. Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments[J]. Phys Plasmas, 2002, 9: 2738-2744. doi: 10.1063/1.1476308
|
[127] |
Smalyuk V A, Hu S X, Hager J D, et al. Rayleigh-Taylor growth measurements in the acceleration phase of spherical implosions on OMEGA[J]. Phys Rev Lett, 2009, 103: 105001.
|
[128] |
Parker K, Horsfield C J, Rothman S D, et al. Observation and simulation of plasma mix after reshock in a convergent geometry[J]. Phys Plasmas, 2004, 11: 2696-2701. doi: 10.1063/1.1647131
|
[129] |
Rinderknecht H G, Sio H, Li C K, et al. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions[J]. Phys Rev Lett, 2014, 112: 135001. doi: 10.1103/PhysRevLett.112.135001
|
[130] |
Casner A, Galmiche D, Huser G, et al. Indirect drive ablative Rayleight-Taylor experiments with rugby hohlraums on OMEGA[J]. Phys Plasmas, 2009, 16: 092701. doi: 10.1063/1.3224027
|
[131] |
Ali S J, Celliers P M, Haan S W, et al. Hydrodynamic instability seeding by oxygen nonuniformities in glow discharge polymer inertial fusion ablators[J]. Phys Rev E, 2018, 98: 033204. doi: 10.1103/PhysRevE.98.033204
|
[132] |
Ali S J, Celliers P M, Haan S, et al. Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry[J]. Phys Plasmas, 2018, 25: 092708. doi: 10.1063/1.5047943
|
[133] |
Aglitskiy Y, Velikovich A L, Karasik M, et al. Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions[J]. Phil TransR Soc A, 2010, 368: 1739-1768. doi: 10.1098/rsta.2009.0131
|
[134] |
Metzler N, Velikovich A L, Schmitt A J, et al. Laser imprint reduction with a shaping pulse, oscillatory Richtmyer-Meshkov to Rayleigh-Taylor transition and other coherent effects in plastic-foam targets[J]. Phys Plasmas, 2003, 10: 1897-1905. doi: 10.1063/1.1560616
|
[135] |
Aglitskiy Y, Karasik M, Velikovich A L, et al. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target[J]. Phys Plasmas, 2012, 19: 102707. doi: 10.1063/1.4764287
|
[136] |
Smalyuk V A, Weber C R, Landen O L, et al. Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility[J]. Plasma Phys Control Fusion, 2020, 62: 014007. doi: 10.1088/1361-6587/ab49f4
|
[137] |
Smalyuk V A, Tipton R E, Pino J E, et al. Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility[J]. Phys Rev Lett, 2014, 112: 025002. doi: 10.1103/PhysRevLett.112.025002
|
[138] |
Martinez D A, Smalyuk V A, Kane J O, et al. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF[J]. Phys Rev Lett, 2015, 114: 215004. doi: 10.1103/PhysRevLett.114.215004
|
[139] |
Casner A, Mailliet C, Khan S F, et al. Long-duration planar direct-drive hydrodynamics experiments on the NIF[J]. Plasma Physics and Controlled Fusion, 2018, 60: 014012. doi: 10.1088/1361-6587/aa8af4
|
[140] |
Nagel S R, Raman K S, Huntington C M, et al. A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility[J]. Phys Plasmas, 2017, 24: 072704. doi: 10.1063/1.4985312
|
[141] |
Fujioka S, Shiraga H, Nishikino M, et al. First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh-Taylor instability research[J]. Phys Plasmas, 2003, 10: 4784-4789. doi: 10.1063/1.1622951
|
[142] |
Shigemori K, Azechi H, Fujioka S, et al. Hydrodynamic instability experiments on the HIPER laser[J]. AIP Conference Proceedings, 2003, 669: 269-272. doi: 10.1063/1.1593917
|
[143] |
Otani K, Shigemori K, Sakaiya T, et al. Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation[J]. Phys Plasmas, 2007, 14: 122702. doi: 10.1063/1.2817092
|
[144] |
Endo T, Shigemori K, Azechi H, et. al Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils[J]. Phys Rev Lett, 1995, 74: 3608-3611. doi: 10.1103/PhysRevLett.74.3608
|
[145] |
Shigemori K, Nakai M, Azechi H, et al. Feed-out of rear surface perturbation due to rarefactionwave in laser-irradiated targets[J]. Phys Rev Lett, 2000, 84: 5331-5334. doi: 10.1103/PhysRevLett.84.5331
|
[146] |
Goldstein W, Rosner R. Workshop on the Science of Fusion Ignition on NIF[R]. LLNL-TR-570412, 2012.
|
[147] |
2015 review of the inertial confinement fuion and high hnergy hensity science portfolio[Z]. 2016.
|
[148] |
Miller G H, Moses E I, and WuestC R. The National Ignition Facility: enabling fusion ignition for the 21st century[J]. Nucl Fusion, 2004, 44: S228. doi: 10.1088/0029-5515/44/12/S14
|
[149] |
宋鹏, 翟传磊, 李双贵, 等. 激光间接驱动惯性约束聚变二维总体程序——LARED集成程序[J]. 强激光与粒子束, 2015, 27:032007. (Song Peng, Zhai Chuanlei, Li Shuanggui, et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032007 doi: 10.11884/HPLPB201527.032007
|
[150] |
Li Y S, Gu J F, Wu C S, et al. Effects of the P2 M-band flux asymmetry of laser-driven gold hohlraums on the implosion of ICF ignition capsule[J]. Phys Plasmas, 2016, 23: 072705. doi: 10.1063/1.4958811
|
[151] |
Li Y S, Zhai C L, Ren G L, et al. P2 asymmetry of Au's M-band flux and its smoothing effects due to high-Z ablator dopants[J]. Matter Radiat Extremes, 2017, 2: 69. doi: 10.1016/j.mre.2016.12.001
|
[152] |
Haan S W, Lindl J D, Callahan D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Phys Plasmas, 2011, 18: 051001. doi: 10.1063/1.3592169
|
[153] |
Yi S A, Simakov A N, Wilson D C, et al. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility[J]. Phys Plasmas, 2014, 21: 092701. doi: 10.1063/1.4894112
|
[154] |
李波, 张占文, 何智兵, 等. 激光惯性约束聚变靶靶丸制备与表征[J]. 强激光与粒子束, 2015, 27:032024. (Li Bo, Zhang Zhanwen, He Zhibing, et al. Preparation and characterization of inertial confinement fusion capsules[J]. High Power Laser and Particle Beams, 2015, 27: 032024 doi: 10.11884/HPLPB201527.032024
|
[155] |
Zhou Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I[J]. Physics Reports, 2017, 720: 1-136.
|
[156] |
Ott E. Nonlinear evolution of the Rayleigh-Taylor instability of a thin layer[J]. Phys Rev Lett, 1972, 29: 1429. doi: 10.1103/PhysRevLett.29.1429
|
[157] |
Manheimer W, Colombant D, Ott E. Three-dimensional, nonlinear evolution of the Rayleigh-Taylor instability of a thin layer[J]. Phys Fluids, 1984, 27: 2164-2175. doi: 10.1063/1.864842
|
[158] |
Colombant D, Manheimer W, Ott E. Three-dimensional, nonlinear evolution of the Rayleigh-Taylor instability of a thin layer[J]. Phys Rev Lett, 1984, 53: 446-449. doi: 10.1103/PhysRevLett.53.446
|
[159] |
赵凯歌. 收缩几何非线性流体力学不稳定性薄壳理论[D]. 北京: 中国工程物理研究院, 2019.
Zhao Kaige. Thin Shell theory for the nonlinear hydrodynamic instability in convergent geometry[D]. Beijing: China Academy of Engineering Physics, 2019.
|
[160] |
Zhao K G, Wang L F, Xue C, et al. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability[J]. Phys Plasmas, 2018, 25: 032708. doi: 10.1063/1.5009257
|
[161] |
赵凯歌, 薛创, 王立锋, 等. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型[J]. 物理学报, 2018, 67:094701. (Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface[J]. Acta Physica Sinica, 2018, 67: 094701 doi: 10.7498/aps.67.20172613
|
[162] |
Zhao K G, Xue C, Wang L F, et al. Thin shell model for the nonlinear fluid instability of cylindrical shells[J]. Phys Plasmas, 2018, 25: 092703. doi: 10.1063/1.5044443
|
[163] |
Zhao K G, Xue C, Wang L F, et al. Two-dimensionalthin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry[J]. Phys Plasmas, 2019, 26: 022710. doi: 10.1063/1.5079316
|
[164] |
Wang L F, Guo H Y, Wu J F, et al. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer[J]. Phys Plasmas, 2014, 21: 122710. doi: 10.1063/1.4904363
|
[165] |
Wang L F, Ye W H, Li Y J. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime[J]. Phys Plasmas, 2010, 17: 052305. doi: 10.1063/1.3396369
|
[166] |
Mikaelian K O. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers[J]. Phys Rev E, 2003, 67: 026319. doi: 10.1103/PhysRevE.67.026319
|
[167] |
Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells[J]. Phys Fluids, 2005, 17: 094105. doi: 10.1063/1.2046712
|
[168] |
Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells[J]. Phys Rev A, 1990, 42: 3400-3420. doi: 10.1103/PhysRevA.42.3400
|
[169] |
Hurricane O A, Callahan D A, Casey D T, et al. The high-foot implosion campaign on the National Ignition Facility[J]. Phys Plasmas, 2014, 21: 056314. doi: 10.1063/1.4874330
|
[170] |
Wang L F, Wu J F, Fan Z F, et al. Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability[J]. Phys Plasmas, 2012, 19: 112706. doi: 10.1063/1.4766165
|
[171] |
Wang L F, Wu J F, Ye W H, et al. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces[J]. Phys Plasmas, 2013, 20: 042708. doi: 10.1063/1.4803067
|
[172] |
Zhang J, Wang L F, Ye W H, et al. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry[J]. Phys Plasmas, 2017, 24: 062703. doi: 10.1063/1.4984782
|
[173] |
Layzer D. On the instability of superposed fluids in a gravitational field[J]. Astrophys J, 1955, 122(1): 1.
|
[174] |
Zhang J, Wang L F, Ye W H, et al. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical and planar geometries[J]. Phys Plasmas, 2018, 25: 022701. doi: 10.1063/1.5017749
|
[175] |
Zhang J, Wang L F, Ye W H, et al. Multimode Rayleigh-Taylor instability in the weakly nonlinear regime in spherical geometry[J]. Phys Plasmas, 2018, 25: 082723.
|
[176] |
Hecht J, Alon U, Shvarts D. Potential flow models of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts[J]. Phys Fluids, 1994, 6: 4019. doi: 10.1063/1.868391
|
[177] |
Sakagami H, Nishihara K. Three-dimensional Rayleigh-Taylor instability of spherical systems[J]. Phys Rev Lett, 1994, 65(4): 432.
|
[178] |
Zhang J, Wang L F, Wu J F, et al. The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry[J]. Phys Plasmas, 2020, 27: 022707. doi: 10.1063/1.5128644
|
[179] |
Fryxell B, Olson K, Ricker P, et al. Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. Astrophys J Suppl Ser, 2000, 131: 273-334. doi: 10.1086/317361
|
[180] |
Jacobs J W, Catton I. Three-dimensional Rayleigh-Taylor instability Part 1. Weakly nonlinear theory[J]. J Fluid Mech, 1988, 187: 329-352. doi: 10.1017/S002211208800045X
|
[181] |
Haan S W. Weakly nonlinear hydrodynamic instabilities in inertial fusion[J]. Phys Fluids B, 1991, 3: 2349-2355. doi: 10.1063/1.859603
|
[182] |
Liu W H, Wang L F, Ye W H, et al. Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability atarbitrary Atwood numbers[J]. Phys Plasmas, 2012, 19: 042705. doi: 10.1063/1.3702063
|
[183] |
Liu W H, Wang L F, Ye W H, et al. Temporal evolution of bubble tip velocity in classical Rayleigh-Taylor instability at arbitrary Atwood numbers[J]. Phys Plasmas, 2013, 20: 062101. doi: 10.1063/1.4801505
|
[184] |
Simakov A N, Wilson D C, Yi S A, et al. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility[J]. Phys Plasma, 2014, 21: 022701. doi: 10.1063/1.4864331
|
[185] |
Weir S T, Chandler E A, Goodwin B T. Rayleigh-Taylor instability experiments examining feedthrough growth in an incompressible, convergent geometry[J]. Phys Rev Lett, 1998, 80(17): 3763-3766. doi: 10.1103/PhysRevLett.80.3763
|
[186] |
Shigemori K, Azechi H, Nakai M, et al. Perturbation transfer from the front to rear surface of laser-irradiated targets[J]. Phys Rev E, 2002, 65: 045401.
|
[187] |
Milovich J L, Amendt P, Marinak M, et al. Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs[J]. Phys Plasmas, 2004, 11(4): 1552-1568. doi: 10.1063/1.1646161
|
[188] |
Li Zhiyuan, Wang Lifeng, Wu Junfeng, et al. Phase effects of long-wavelength Rayleigh-Taylor instability on the thin shell[J]. Chinese Physics Letters, 2020, 37: 025201. doi: 10.1088/0256-307X/37/2/025201
|
[189] |
Li Zhiyuan, Wang Lifeng, Wu Junfeng, et al. Numerical study on the laser ablative Rayleigh-Taylor instability[J]. Acta Machanica Sinica, 2020,36: 789-796.
|
[190] |
Li Zhiyuan, Wang Lifeng, Wu Junfeng, et al. Interface coupling effects of the weakly nonlinear Rayleigh-Taylor instability with double interfaces[J]. Chinese Physics B, 2020, 29: 034704. doi: 10.1088/1674-1056/ab6965
|
[191] |
Mikaelian K O. Time evolution of density perturbations in accelerating stratified fluids[J]. Physical Review A, 1983, 28(3): 1637-1646. doi: 10.1103/PhysRevA.28.1637
|
[192] |
Clark D S, Marinak M M, Weber C R, et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign[J]. Phys Plasmas, 2015, 22: 022703. doi: 10.1063/1.4906897
|
[193] |
Clark D S, Hinkel D E, Eder D C, et al. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility[J]. Phys Plasmas, 2013, 20: 056318. doi: 10.1063/1.4802194
|
[194] |
Wang L F, Wu J F, Guo H Y, et al. Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder[J]. Phys Plasmas, 2015, 22: 082702. doi: 10.1063/1.4928088
|
[195] |
Ofer D, Alon U, Shvarts D, et al. Modal model for the nonlinear multimode Rayleigh-Taylor instability[J]. Phys Plasmas, 1996, 3: 3073-3090. doi: 10.1063/1.871655
|
[196] |
Vandenboomgaerde M, Gauther S, Mugler C. Nonlinear regime of a multimode Richtmyer-Meshkov instability: A simplified perturbation theory[J]. Phys Fluids, 2002, 14: 1111-1122. doi: 10.1063/1.1447914
|
[197] |
Hsing W W, Barnes C W, Beck J B, et al. Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions[J]. Phys Plasmas, 1997, 4: 1832. doi: 10.1063/1.872326
|
[198] |
Ikegawa T, Nishihara K. Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth[J]. Phys Rev Lett, 2002, 89: 115001. doi: 10.1103/PhysRevLett.89.115001
|
[199] |
Sanz J, Ramirez J, Ramis R, et al. Nonlinear theory of the ablative Rayleigh-Taylor instability[J]. Phys Rev Lett, 2002, 89: 195002. doi: 10.1103/PhysRevLett.89.195002
|
[200] |
Garnier J, Raviart P A, Cherfils-Clerouin C, et al. Weakly nonlinear theory for the ablative Rayleigh-Taylor instability[J]. Phys Rev Lett, 2003, 90: 185003. doi: 10.1103/PhysRevLett.90.185003
|
[201] |
Jiang Y, Shu C W, Zhang M. An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws[J]. SIAM J Sci Comput, 2013, 35(2): A1137-A1160. doi: 10.1137/120889885
|
[202] |
Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. J Comput Phys, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
|
[203] |
Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. J Comput Phys, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
|
[204] |
Castro M, Costa B, Don W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. J Comput Phys, 2011, 230(5): 1766-1792. doi: 10.1016/j.jcp.2010.11.028
|
[205] |
Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. J Comput Phys, 2008, 227(6): 3191-3211. doi: 10.1016/j.jcp.2007.11.038
|
[206] |
Wang B S, Li P, Gao Z, et al. An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws[J]. J Comput Phys, 2018, 374: 469-477. doi: 10.1016/j.jcp.2018.07.052
|
[207] |
Gao Z, Fang L L, Wang B S, et al. Seventh and ninth orders alternative WENO finite difference schemes for hyperbolic conservation laws[J]. Comput Fluids, 2020, 202.
|
[208] |
Xing Y, Shu C W. High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields[J]. J Sci Comput, 2013, 54: 645-662. doi: 10.1007/s10915-012-9585-8
|
[209] |
Zhang X X, Shu C W. Positivity-preserving high order finite difference WENO schemes for compressible Euler equations[J]. J Comput Phys, 2012, 231(5): 2245-2258. doi: 10.1016/j.jcp.2011.11.020
|
[210] |
Luo J, Xu K, Liu N. A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic equations under gravitational field[J]. SIAM J Sci Comput, 2011, 33: 2356-2381. doi: 10.1137/100803699
|
[211] |
Zylstra A B, MacLaren S, Yi S A, et al. Implosion performance of subscale beryllium capsules on the NIF[J]. Phys Plasmas, 2019, 26: 052702. doi: 10.1063/1.5086674
|
[212] |
Bose A, Betti R, Shvarts D, et al. The physics of long- and intermediate-wavelength asymmetries of the hot spot: compression hydrodynamics and energetics[J]. Phys Plasmas, 2017, 24: 102704. doi: 10.1063/1.4995250
|
[213] |
Goncharov V N, Gotchev O V, Vianello E, et al. Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution[J]. Phys Plasms, 2006, 13: 012702. doi: 10.1063/1.2162803
|
[214] |
Wu J F, Miao W Y, Wang L F, et al. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility[J]. Phys Plasmas, 2014, 21: 042707. doi: 10.1063/1.4871721
|
[215] |
Ye W H, Wang L F, He X T. Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability[J]. Phys Plasmas, 2010, 17: 122704. doi: 10.1063/1.3497006
|