Kan Mingxian, Duan Shuchao, Zhang Zhaohui, et al. Verification and validation of two dimensional magnetically driven simulation code MDSC2[J]. High Power Laser and Particle Beams, 2019, 31: 065001. doi: 10.11884/HPLPB201931.180300
Citation: Song Mengmeng, Zhou Qianhong, Sun Qiang, et al. Application of coulomb collision cross-section in particle-in-cell simulation of plasma[J]. High Power Laser and Particle Beams, 2021, 33: 034004. doi: 10.11884/HPLPB202133.200179

Application of coulomb collision cross-section in particle-in-cell simulation of plasma

doi: 10.11884/HPLPB202133.200179
  • Received Date: 2020-06-29
  • Rev Recd Date: 2020-11-12
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • In particle-in-cell simulation of plasma, TA and Nanbu models have been widely used for Coulomb collision. Both models require all particles to collide. In this paper, a cross-section-based method is introduced to give a probability of Coulomb collision for each particle pair and accelerate the computation. To test this method, the relaxations of an electron gas due to e-e collisions were simulated. Comparing the simulated with the theoretical values of velocity distribution function, electron temperature, the ratio of electron temperature in x, y direction to electron temperature, the accuracy of the cross-section-based method was verified. The calculation efficiency of this method can be improved by more than 40% than the TA model at the same small time step. Furthermore, at a large time step, the simulations show agreement with the theoretical solutions, the efficiency is also improved than the Nanbu model. The simulation about the equilibration of electron and ion temperature showes that this method is also suitable for e-i collisions. Therefore in the acceleration of simulating Coulomb collision, this method has two advantages as follows: first, there is a small number of particles to collide within a step, and second, it is suitable for large time steps.
  • [1]
    Hagelaar G J M, Donko Z, Dyatko N. Modification of the Coulomb logarithm due to electron-neutral collisions[J]. Physical Review Letters, 2019, 123: 025004. doi: 10.1103/PhysRevLett.123.025004
    [2]
    Birdsall C K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 65-85. doi: 10.1109/27.106800
    [3]
    Takizuka T, Abe H. A binary collision model for plasma simulation with a particle code[J]. Journal of Computational Physics, 1977, 25(3): 205-219. doi: 10.1016/0021-9991(77)90099-7
    [4]
    Veske M, Kyritsakis A, Djurabekova F. Dynamic coupling between particle-in-cell and atomistic simulations[J]. Physical Review E, 2020, 101: 053307. doi: 10.1103/PhysRevE.101.053307
    [5]
    杨超, 刘大刚, 王小敏, 等. 基于负氢离子源的全三维PIC/MCC 模拟算法研究[J]. 物理学报, 2012, 61:045204. (Yang Chao, Liu Dagang, Wang Xiaomin, et al. A three-dimensional particle-in-cell/Monte Carlo computer simulation based on negative hydrogen ion source[J]. Acta Physica Sinica, 2012, 61: 045204 doi: 10.7498/aps.61.045204
    [6]
    Nanbu K. Theory of cumulative small-angle collisions in plasmas[J]. Physical Review E—Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55(4): 4642-4652.
    [7]
    王辉辉, 杨超, 刘大刚, 等. Ta及Nanbu库仑碰撞模型数值对比研究[J]. 物理学报, 2013, 62:015206. (Wang Huihui, Yang Chao, Liu Dagang, et al. Numerical comparison between Ta and Nanbu models of Coulomb collisions[J]. Acta Physica Sinica, 2013, 62: 015206 doi: 10.7498/aps.62.015206
    [8]
    Dominguez-Vázquez A, Taccogna F, Ahedo E. Particle modeling of radial electron dynamics in a controlled discharge of a Hall thruster[J]. Plasma Sources Science and Technology, 2018, 27: 064006. doi: 10.1088/1361-6595/aac968
    [9]
    Wang C, Lin T, Caflisch R, et al. Particle simulation of Coulomb collisions: Comparing the methods of Takizuka & Abe and Nanbu[J]. Journal of Computational Physics, 2008, 227(9): 4308-4329. doi: 10.1016/j.jcp.2007.12.027
    [10]
    Caflisch R, Wang R, Dimarco G, Dimarco, et al. A hybrid method for accelerated simulation of Coulomb collisions in a plasma[J]. Multiscale Model Simul, 2008, 7(2): 865-887. doi: 10.1137/070704939
    [11]
    Ricketson L F, Rosin M S, Caflisch R E, et al. An entropy based thermalization scheme for hybrid simulations of Coulomb collisions[J]. Journal of Computational Physics, 2014, 273: 77-99. doi: 10.1016/j.jcp.2014.04.059
    [12]
    Lemons D S, Winske D, Daughton W, et al. Small-angle Coulomb collision model for particle-in-cell simulations[J]. Journal of Computational Physics, 2009, 228(5): 1391-1403. doi: 10.1016/j.jcp.2008.10.025
    [13]
    Vahedi V, Surendra M. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges[J]. Computer Physics Communications, 1995, 87(1/2): 179-198.
    [14]
    Sjobak K, Helga T. 2D ArcPIC code description: description of methods and user/developer manual (Second Edition)[R]. CLIC-Note-1032, 2014.
    [15]
    姜巍. 射频容性耦合等离子体的两维隐格式PIC/MC模拟[D]. 大连理工大学, 2010: 33-34.

    Jiang Wei. Two-dimensional implicit PIC/MC simulations for radio-frequency capacitively coupled plasma[D]. Dalian: Dalian University of Technology, 2010: 33-34
    [16]
    徐家鸾, 金尚宪. 等离子体物理学[M]. 北京: 原子能出版社, 1981: 34-37.

    Xu Jialuan, Jin Shangxian. Plasma physics[M]. Beijing: Atomic Energy Press, 1981: 34-37
    [17]
    Diver D A. Plasma formulary for physics, astronomy, and technology[M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013: 91-92
  • Relative Articles

    [1]Lu Honglin, Wu Xinjie, Zhang Debin, Qu Chengzhi, Zhang Zhongsong, Zhang Yu. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams, 2024, 36(2): 025021. doi: 10.11884/HPLPB202436.230171
    [2]Mao Pengxin, Tang Yongliang, Wang Xiufang, Liu Qingxiang. Design and research of C-band miniaturized high power microwave output window[J]. High Power Laser and Particle Beams, 2024, 36(3): 033008. doi: 10.11884/HPLPB202436.230359
    [3]Su Yiyu, Li Xiangqiang, Wei Yihong, Zhang Jianqiong, Wang Qingfeng. Design of a high-power miniaturized waveguide E-plane heterodyne power combiner[J]. High Power Laser and Particle Beams, 2024, 36(7): 073003. doi: 10.11884/HPLPB202436.230433
    [4]Wei Yihong, Li Xiangqiang, Su Yiyu, Zhang Jianqiong, Wang Qingfeng. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36(7): 073005. doi: 10.11884/HPLPB202436.230421
    [5]Li Ya’nan, Liu Shishuo, Cai Jun. Design of high-power wide-band G-band third harmonic amplifier[J]. High Power Laser and Particle Beams, 2021, 33(3): 033002. doi: 10.11884/HPLPB202133.200251
    [6]Zhang Cuicui, Wang Yi, Wang Jianzhong, He Bin, Yu Mingmei. A miniaturized power density measurement system for high-power microwave radiation field[J]. High Power Laser and Particle Beams, 2020, 32(3): 033002. doi: 10.11884/HPLPB201931.190351
    [7]Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, Wu Yang. Design of high power terahertz backward wave oscillator[J]. High Power Laser and Particle Beams, 2016, 28(09): 093004. doi: 10.11884/HPLPB201628.160002
    [8]Liu Jie, Zhang Jian, Jiang Jun, Tian Yaoling, Deng Xianjin. Design of D-band power amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023102. doi: 10.11884/HPLPB201628.023102
    [9]Liu Min, Liu Xiaolong, Yan Feng, Liu Ying, Xiong Zhengfeng. Miniaturized high power microwave radiation-field measuring antenna at L-band[J]. High Power Laser and Particle Beams, 2015, 27(04): 043002. doi: 10.11884/HPLPB201527.043002
    [10]Yang Shi, Ren Shuqing, Lai Dingguo, Zhang Yuying, Yang Li, Yao Weibo, Zhang Yongmin. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27(09): 095006. doi: 10.11884/HPLPB201527.095006
    [11]Yan Feng, Ning Hui, Liu Xiaolong, Jiang Xing. Design of a small-sized expanded coaxial line antenna at L-band[J]. High Power Laser and Particle Beams, 2012, 24(07): 1599-1602.
    [12]huang wei, chang shaohui, chen zhizhan, shi erwei. On-state characteristics of an 11 kV high-power SiC photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [13]huang wei, chang shaohui, chen zhizhan, shi erwei. On-state characteristics of an 11 kV high-power SiC photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [14]liu hongwei, yuan jianqiang, liu jinfeng, li hongtao, xie weiping, jiang weihua. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [15]yuan jianqiang, li hongtao, liu hongwei, liu jinfeng, xie weiping, wang xinxin, jiang weihua. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [16]li zaijin, hu liming, wang ye, zhang xing, wang xiangpeng, qin li, liu yun, wang lijun. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [17]gao yinghui, sun yaohong, yan ping, shi yi. 40 kW digital control capacitor charging power supply[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [18]he xiao-hai, lin li-bin, zhang hui-jun, zhan jia-xue, li qi, zhao jian-hua, jia chao-wei. Development of 1.2 MV high power DC generator[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [19]zhao feng-li, liu jin-tong, zhou yao-xiang. Development of high power waveguide valve for BEPCⅡ-Linac[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [20]liu feng, fan ya-jun, zhang xue-xia. Preliminary research on electric-magnetic vibrator combined UWB antenna[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
  • Cited by

    Periodical cited type(1)

    1. 吴文溢, 钟方平, 王万鹏, 陈西宏, 朱丹. 改进射线描迹的低仰角散射斜延迟实时估计. 电子与信息学报. 2019(10): 2366-2372 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.7 %FULLTEXT: 26.7 %META: 72.2 %META: 72.2 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %其他: 0.6 %其他: 0.6 %China: 0.5 %China: 0.5 %India: 0.1 %India: 0.1 %United States: 0.6 %United States: 0.6 %[]: 0.2 %[]: 0.2 %上海: 2.7 %上海: 2.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 16.2 %北京: 16.2 %台州: 0.3 %台州: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %安康: 0.1 %安康: 0.1 %广州: 0.1 %广州: 0.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.1 %张家口: 1.1 %晋城: 0.2 %晋城: 0.2 %普洱: 0.1 %普洱: 0.1 %杭州: 0.5 %杭州: 0.5 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.3 %湖州: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.3 %纽约: 0.3 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 18.3 %芒廷维尤: 18.3 %衢州: 0.3 %衢州: 0.3 %西宁: 52.1 %西宁: 52.1 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.3 %运城: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.3 %阳泉: 0.3 %随州: 0.1 %随州: 0.1 %鹰潭: 0.1 %鹰潭: 0.1 %其他其他ChinaIndiaUnited States[]上海中山临汾丹东北京台州哥伦布安康广州廊坊张家口晋城普洱杭州桃园武汉深圳湖州秦皇岛纽约绵阳芒廷维尤衢州西宁西安贵阳运城郑州重庆长治阳泉随州鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1910) PDF downloads(151) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return