Cai Hongbo, Zhang Wenshuai, Du Bao, et al. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 2020, 32: 092007. doi: 10.11884/HPLPB202032.200134
Citation: Fan Peiliang, He Xiaozhong, Yang Liu, et al. Simulation of the solenoid scan method used in overlapping field for thermal emittance measurement[J]. High Power Laser and Particle Beams, 2021, 33: 024003. doi: 10.11884/HPLPB202133.200197

Simulation of the solenoid scan method used in overlapping field for thermal emittance measurement

doi: 10.11884/HPLPB202133.200197
  • Received Date: 2020-07-13
  • Rev Recd Date: 2020-10-21
  • Publish Date: 2021-01-07
  • In one high repetition frequency X-ray free electron laser (XFEL) equipment, the electron gun and compensate solenoid have special structure in the photoinjector, thus the electric field and the magnetic field overlaps near the cathode. The thermal emittance of the cathode should be measured in the experiment. The solenoid scan method used to measure the thermal emittance is not suitable for the overlapping field, because it works effectively only when the rms emittance keeps constant. As the normalized phase space can avoid the influence of the electric field, we tried to use the solenoid scan method in normalized phase space. Using simulation code to do simulations and analysis, we finally demonstrate that this method is feasible for measurement of thermal emittance of the photoinjector which has overlapping field.
  • [1]
    Altarelli M, Brinkmann R, Chergui M, et al. Technical design report of the European X-ray free-electron laser[R]. DESY Report No. 2006-097, 2006.
    [2]
    Arthur J, Anfinrud P, Audebert P, et al. LCLS conceptual design[R]. Report No. SLAC-R-593, 2002.
    [3]
    Russell S J, Carlsten B E, Duffy L D, et al. MaRIE XFEL pre-conceptual reference design injector[R]. LA-UR-15-21963, 2015.
    [4]
    Kwang-Je K I M. RF and space-charge effects in laser-driven RF electron guns[J]. Nuclear Instruments and Methods in Physics Research A, 1989, 275: 201-218. doi: 10.1016/0168-9002(89)90688-8
    [5]
    Carlsten B E. New photoelectic injector design for the Los Alamos National Laboratory XUV FEL accelerator[J]. Nuclear Instruments and Methods in Physics Research A, 1989, 28: 313-319.
    [6]
    Luiten O J, van der Geer S B, de Loos M J, et al. How to realize uniform three-dimensional ellipsoidal electron bunches[J]. Phys Rev Lett, 2004, 93: 094802. doi: 10.1103/PhysRevLett.93.094802
    [7]
    Yusof Z M, Conde M E, Wei Gai. Schottky-enabled photoemission in a RF accelerator photoinjector: possible generation of ultralow transverse thermal-emittance electron beam[J]. Phys Rev Lett, 2004, 93: 114801. doi: 10.1103/PhysRevLett.93.114801
    [8]
    Miltchev V. Modelling the transverse phase space and emittance studies at PITZ[C]//Proceedings of the 27th FEL Conference. 2005: 556-559.
    [9]
    Anderson S G, Rosenzweig J B. Space-charge effects in high brightness electron beam emittance measurements[J]. Phys Rev ST Accel Beams, 2002, 5: 014201. doi: 10.1103/PhysRevSTAB.5.014201
    [10]
    Kim Y, Andersson A, Dach M, et al. Low thermal emittance measurements at the PSI-XFEL low emittance gun test facility[C]//Proceedings of FEL08. 2008: 110-113.
    [11]
    Graves W S, DiMauro L F, Heese R, et al. DUVFEL photoinjector dynamics: measurement and simulation[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 2230-2232.
    [12]
    Sannibale F, Filippetto D, Cork C, et al. Recent result from the APEX project at LBNL[C]//Proceedings of the PAC.2013: 709-713.
    [13]
    Xiang Dao, Du Yingchao, Yan Lixin, et al. Transverse phase space tomography using a solenoid applied to a thermal emittance measurement[J]. Phys Rev ST Accel Beams, 2009, 12: 022801. doi: 10.1103/PhysRevSTAB.12.022801
    [14]
    Chao A W, Tigner M. Handbook of accelerator physics and engineering[M]. 3rd Ed. World Scientific Publishing, 2006: 71-75.
    [15]
    Kobayashi S, Nomizu K. Foundations of differential geometry[M]. John Wiley & Sons, 1963.
    [16]
    Flottmann K. A space charge tracking algorithm[R]. https://www.desy.de/~mpyflo/Astra_manual/Astra-Manual_V3.2.pdf.
  • Relative Articles

    [1]Tu Shaoyong, Jiang Wei, Yin Chuansheng, Yu Chengxin, Fan Zhengfeng, Yuan Yongteng, Pu Yudong, Miao Wenyong, Hu Xin, Li Jin, Yang Yimeng, Che Xingsen, Dong Yunsong, Yang Dong, Yang Jiamin. Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions[J]. High Power Laser and Particle Beams, 2024, 36(12): 122001. doi: 10.11884/HPLPB202436.240379
    [2]Wang Feng, Li Yulong, Guan Zanyang, Zhang Xing, Li Jin, Huang Yunbao, Gan Huaquan, Che Xingsen. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34(3): 031021. doi: 10.11884/HPLPB202234.210250
    [3]Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(12): 122002. doi: 10.11884/HPLPB202234.220238
    [4]Wang Lifeng, Ye Wenhua, Chen Zhu, Li Yongsheng, Ding Yongkun, Zhao Kaige, Zhang Jing, Li Zhiyuan, Yang Yunpeng, Wu Junfeng, Fan Zhengfeng, Xue Chuang, Li Jiwei, Wang Shuai, Hang Xudeng, Miao Wenyong, Yuan Yongteng, Tu Shaoyong, Yin Chuansheng, Cao Zhurong, Deng Bo, Yang Jiamin, Jiang Shaoen, Dong Jiaqin, Fang Zhiheng, Jia Guo, Xie Zhiyong, Huang Xiuguang, Fu Sizu, Guo Hongyu, Li Yingjun, Cheng Tao, Gao Zhen, Fang Lili, Wang Baoshan, Wang Yinghua, Zeng Weixin, Lu Yan, Kuang Yuanyuan, Zhao Zhenchao, Chen Wei, Dai Zhensheng, Gu Jianfa, Ge Fengjun, Kang Dongguo, Zhang Huasen, Qiao Xiumei, Li Meng, Liu Changli, Shen Hao, Xu Yan, Gao Yaoming, Liu Yuanyuan, Hu Xiaoyan, Xu Xiaowen, Zheng Wudi, Zou Shiyang, Wang Min, Zhu Shaoping, Zhang Weiyan, He Xiantu. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33(1): 012001. doi: 10.11884/HPLPB202133.200173
    [5]Yü Shihan, Li Xiaofeng, Weng Suming, Zhao Yao, Ma Hanghang, Chen Min, Sheng Zhengming. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33(1): 012006. doi: 10.11884/HPLPB202133.200125
    [6]Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, Wang Weiwu, Cai Hongbo, Tian Chao, Zhang Feng, Zhang Tiankui, Deng Zhigang, Zhang Wenshuai, Teng Jian, Bi Bi, Yang Siqian, Yang Dong, Zhou Weimin, Gu Yuqiu, Zhang Baohan, Zhu Shaoping. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33(1): 012004. doi: 10.11884/HPLPB202133.200235
    [7]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [8]Zhong Zheqiang, Zhang Bin. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 2020, 32(1): 011012. doi: 10.11884/HPLPB202032.190454
    [9]Wang Feng, Zhang Xing, Li Yulong, Chen Bolun, Chen Zhongjing, Xu Tao, Liu Xincheng, Zhao Hang, Ren Kuan, Yang Jiamin, Jiang Shaoen, Zhang Baohan. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002. doi: 10.11884/HPLPB202032.200136
    [10]Li Zhichao, Zhao Hang, Gong Tao, Li Xin, Yang Dong, Jiang Xiaohua, Zheng Jian, Liu Yonggang, Liu Yaoyuan, Chen Chaoxin, Li Sanwei, Li Qi, Pan Kaiqiang, Guo Liang, Li Yulong, Xu Tao, Peng Xiaoshi, Wu Changshu, Zhang Huasen, Hao Liang, Lan Ke, Chen Yaohua, Zheng Chunyang, Gu Peijun, Wang Feng, Cai Hongbo, Zheng Wudi, Zou Shiyang, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Zhu Shaoping, Ding Yongkun. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(9): 092004. doi: 10.11884/HPLPB202032.200130
    [11]Duan Shuchao, Xie Weiping, Wang Ganghua. Possibility of complete stabilization of magneto-Rayleigh-Taylor instabilities and potential for fusion[J]. High Power Laser and Particle Beams, 2018, 30(2): 020101. doi: 10.11884/HPLPB201830.170454
    [12]Yan Ji, Zheng Jianhua, Zhang Xing, Ge Fengjun, Kang Dongguo, Yuan Yongteng, Chen Li, Song Zifeng, Jiang Wei, Yu Bo, Chen Bolun, Pu Yudong, Huang Tianxuan. Quasi-one-dimensional implosion performance in D-D filled capsule based on pure shock yield mechanism[J]. High Power Laser and Particle Beams, 2015, 27(08): 082007. doi: 10.11884/HPLPB201527.082007
    [13]Pu Yudong, Chen Bolun, Huang Tianxuan, Miao Wenyong, Chen Jiabin, Zhang Jiyan, Yang Guohong, Yi Rongqing, Wei Minxi, Du Huabing, Peng Xiaoshi, Yu Bo, Jiang Wei, Yan Ji, Jing Longfei, Tang Qi, Song Zifeng, Jiang Shaoen, Yang Jiamin, Liu Shenye, Ding Yongkun. Experimental studies of implosion physics of indirect-drive inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27(03): 032015. doi: 10.11884/HPLPB201527.032015
    [14]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [15]Su Ming, Yu Bo, Song Tianming, He Xiaoan, Zheng Jianhua, Huang Tianxuan, Liu Shenye, Jiang Shaoen. Applications of Geant4 toolkit to implosion physics for inertial confinement fusion experiments[J]. High Power Laser and Particle Beams, 2013, 25(08): 2130-2136. doi: 10.3788/HPLPB20132508.2130
    [16]liu shenye, yang guohong, zhang jiyan, li jun, huang yixiang, hu xin, yi rongqing, du huabing, cao zhurong, zhang haiying, ding yongkun. Experimental research of capsule implosion by X-ray backlighting radiography at Shenguang Ⅱ[J]. High Power Laser and Particle Beams, 2011, 23(12): 37-38.
    [17]teng jian, zhao zongqing, ding yongkun, gu yuqiu. Simulation of D3He fusion monoenergetic proton radiography of ICF implosions[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [18]peng xiaoshi, wang feng, tang daorun, liu shenye, huang tianxuan, liu yonggang, xu tao, chen ming, mei yu. Measurement of inertial confinement fusion reaction rate[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [19]duan bin, li yue-ming, fang quan-yu, zhang ji-yan. Calculation of temperature and density of plasmas in target pellet of ICF experiment[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [20]wang li li, li jia chun. Numerical study on the RayleighTaylor instability with various initial length scale[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
  • Cited by

    Periodical cited type(2)

    1. 袁宗强,邓志刚,滕建,王为武,张天奎,张锋,田超,徐秋月,单连强,周维民,谷渝秋. 纳秒激光驱动非相对论无碰撞静电冲击波反射离子能谱测量的Geant4模拟. 强激光与粒子束. 2022(12): 63-69 . 本站查看
    2. 单连强,吴凤娟,袁宗强,王为武,蔡洪波,田超,张锋,张天奎,邓志刚,张文帅,滕建,毕碧,杨思谦,杨冬,周维民,谷渝秋,张保汉,朱少平. 激光惯性约束聚变动理学效应研究进展. 强激光与粒子束. 2021(01): 92-100 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.8 %FULLTEXT: 18.8 %META: 74.9 %META: 74.9 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.3 %其他: 0.3 %Central District: 0.1 %Central District: 0.1 %China: 1.2 %China: 1.2 %Falls Church: 0.1 %Falls Church: 0.1 %France: 0.1 %France: 0.1 %Germany: 0.0 %Germany: 0.0 %India: 0.1 %India: 0.1 %Israel: 0.0 %Israel: 0.0 %Malaysia: 0.0 %Malaysia: 0.0 %Rochester: 0.1 %Rochester: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.3 %United States: 0.3 %[]: 1.0 %[]: 1.0 %三亚: 0.0 %三亚: 0.0 %上海: 2.8 %上海: 2.8 %东莞: 0.1 %东莞: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %保定: 0.0 %保定: 0.0 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 17.5 %北京: 17.5 %十堰: 0.2 %十堰: 0.2 %南京: 0.4 %南京: 0.4 %南平: 0.0 %南平: 0.0 %南昌: 0.0 %南昌: 0.0 %双鸭山: 0.1 %双鸭山: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %合肥: 1.3 %合肥: 1.3 %周口: 0.0 %周口: 0.0 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %商丘: 0.0 %商丘: 0.0 %墨西哥城: 0.1 %墨西哥城: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %孔敬: 0.1 %孔敬: 0.1 %孟买: 0.0 %孟买: 0.0 %宁波: 0.0 %宁波: 0.0 %安庆: 0.1 %安庆: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.0 %宿迁: 0.0 %帕莱索: 0.2 %帕莱索: 0.2 %常州: 0.0 %常州: 0.0 %常德: 0.0 %常德: 0.0 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.2 %广州: 0.2 %廊坊: 0.1 %廊坊: 0.1 %弗吉: 0.0 %弗吉: 0.0 %张家口: 0.4 %张家口: 0.4 %徐州: 0.0 %徐州: 0.0 %成都: 1.0 %成都: 1.0 %扬州: 0.3 %扬州: 0.3 %拉什特: 0.2 %拉什特: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %杭州: 0.7 %杭州: 0.7 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %济宁: 0.0 %济宁: 0.0 %淄博: 0.1 %淄博: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.3 %温州: 0.3 %湖州: 0.2 %湖州: 0.2 %漯河: 0.7 %漯河: 0.7 %瑟普赖斯: 0.4 %瑟普赖斯: 0.4 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽伦堡: 0.1 %纽伦堡: 0.1 %纽瓦克: 0.0 %纽瓦克: 0.0 %绵阳: 1.3 %绵阳: 1.3 %绵阳市涪城区: 0.0 %绵阳市涪城区: 0.0 %芒廷维尤: 9.4 %芒廷维尤: 9.4 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %菏泽: 0.2 %菏泽: 0.2 %蒙哥马利: 0.1 %蒙哥马利: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.0 %襄阳: 0.0 %西宁: 42.8 %西宁: 42.8 %西安: 0.8 %西安: 0.8 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.0 %贵港: 0.0 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %辽阳: 0.1 %辽阳: 0.1 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %铜仁: 0.0 %铜仁: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 1.2 %长沙: 1.2 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.2 %青岛: 0.2 %香港: 0.2 %香港: 0.2 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %其他其他Central DistrictChinaFalls ChurchFranceGermanyIndiaIsraelMalaysiaRochesterTaichungTaiwan, ChinaUnited KingdomUnited States[]三亚上海东莞中山临汾丹东保定兰州内江北京十堰南京南平南昌双鸭山台北台州合肥周口咸宁哈尔滨哥伦布唐山商丘墨西哥城大连天津太原孔敬孟买宁波安庆宜春宣城宿迁帕莱索常州常德平顶山广州廊坊弗吉张家口徐州成都扬州拉什特昆明晋城普洱杭州武汉沈阳洛阳济南济宁淄博深圳温州湖州漯河瑟普赖斯眉山石家庄福州秦皇岛纽伦堡纽瓦克绵阳绵阳市涪城区芒廷维尤芜湖芝加哥苏州莫斯科菏泽蒙哥马利蚌埠衡水衢州襄阳西宁西安诺沃克贵港贵阳费利蒙辽阳运城连云港邯郸郑州重庆铜仁长春长沙长治阳泉青岛香港香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article views (1369) PDF downloads(73) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return