Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086
Citation: Sun Mingming, Geng Hai, Yang Juntai, et al. Influence of ion beam perveance condition on grids erosion for ion thruster[J]. High Power Laser and Particle Beams, 2021, 33: 024005. doi: 10.11884/HPLPB202133.200229

Influence of ion beam perveance condition on grids erosion for ion thruster

doi: 10.11884/HPLPB202133.200229
  • Received Date: 2020-08-03
  • Rev Recd Date: 2020-12-17
  • Publish Date: 2021-01-07
  • To study the influence of ion beam perveance condition on the grids erosion velocity for 30 cm diameter ion thruster, we established a beam perveance model and calculated the grids erosion velocity caused by CEX (charge exchange) ions by PIC-MCC method, and then compared and analyzed the calculation results with 1500 h short time life test results. The results show that under the normal beam perveance condition, the mass erosion velocity of the accelerator grid and the decelerator grid are (1.11−1.72)×10−15 kg/s and (1.22−1.26)×10−17 kg/s in 3 kW and 5 kW working modes, respectively. Under 5 kW working mode, when the upstream plasma density of the screen grid reaches 4.03×1017 m−3, the beam is under perveance condition, and the maximum ion erosion velocity of the accelerator grid and the decelerator grid is about 4.33×10−15 kg/s and 4.02×10−15 kg/s respectively. Under 3 kW working mode, when the upstream plasma density of the screen grid reaches 0.22×1017 m−3, the beam is in over perveance condition. Meanwhile, the maximum ion erosion velocity of the accelerator grid and the decelerator grid is about 3.24×10−15 kg/s and 5.01×10−15 kg/s respectively. The life test results show that the calculation value of mass erosion velocity of the accelerator grid hole has a small error to the test value. However, the calculation results of erosion velocity of the decelerator grid hole differ greatly from the test results, which is mainly because of the direct bombardment of the beam ions on the decelerator grid hole. From the current research conclusions, it is considered that the variable aperture design for the screen grid hole is an effective measure to reduce the erosion velocity of the accelerator grid hole and the decelerator grid hole caused by CEX ions when the beam is in under or over perveance condition. In addition, variable aperture design of the grids can significantly improve the working life of the thruster.
  • [1]
    Sun Mingming, Zheng Yi, Geng Hai. Grid gap variation of ion thruster during start-up in orbit[J]. IEEE Trans Plasma Science, 2020, 48(2): 455-461.
    [2]
    Hayakawa Y, Yoshida H, Miyazaki K, et al. Validation of an ion-thruster grid thermal model with experiments[R]. AIAA Paper 2010-6946.
    [3]
    Haag T. Mechanical design of carbon ion optics[R]. AIAA Paper 2005-4408.
    [4]
    Brophy J, Katz I, Polk J, et al. Numerical simulations of ion thruster accelerator grid erosion[R]. AIAA Paper 2002-4261.
    [5]
    Chien K R, Tighe W, Bond T, et al. An overview of electric propulsion at L-3 communications, Electron Technologies Inc[R]. AIAA Paper 2006-4322.
    [6]
    Goebel D, Martinez-Lavin M, Bond T, et al. Performance of XIPS electric propulsion in station keeping of the Boeing 702 spacecraft[R]. AIAA Paper 2002-4348.
    [7]
    Noord J. Lifetime assessment of the NEXT ion thruster[R]. AIAA Paper 2007-5274.
    [8]
    Hayashi M. Determination of electron-xenon total excitation cross-section[J]. Journal of Physics D: Applied Physics, 1983, 16(1): 581-589.
    [9]
    Sun Mingming, Wang Liang, Yang Junhai, et al. Study on the key factor of the triple grids’ lifetime for LIPS-300 ion thruster[J]. Plasma Science and Technology, 2018, 20: 045504.
    [10]
    孙明明, 耿海, 龙建飞, 等. 不同环境温度对30 cm离子推力器三栅极组件的离子刻蚀速率影响分析[J]. 推进技术, 2020, 41(1):121-131. (Sun Mingming, Geng Hai, Long Jianfei, et al. Study on the influence of different ambient temperature on the ion erosion rate for the triple grid of 30 cm diameter ion thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 121-131
    [11]
    Goebel D, Schneider A. High voltage breakdown and conditioning of carbon and molybdenum electrodes[J]. IEEE Trans Plasma Science, 2005, 33(4): 1136-1148.
    [12]
    Miller J, Pullins S, Levandier D, et al. Xenon charge cross section for electrostatic thruster models[J]. Journal of Applied Physics, 2002, 91(3): 984-991.
    [13]
    Katz I, Anderson J, Polk J, et al. One dimensional hollow cathode model[J]. Journal of Propulsion and Power, 2003, 19(4): 595-600.
    [14]
    Mikellides I, Katz I, Mandell M. A 1-D model of the Hall-effect thruster with an exhaust region[R]. AIAA Paper 2001-3505
    [15]
    Chen Juanjuan, Zhang Tianping, Geng Hai, et al. Analysis of numerical simulation results of LIPS-200 lifetime experiments[J]. Plasma Science and Technology, 2016, 18(6): 611-616.
    [16]
    Goebel D, Jameson K, Watkins R, et al. Cathode and keeper plasma measurements using an ultra-fast miniature scanning probe[R]. AIAA Paper 2004-3430
    [17]
    贺武生, 孙安邦, 毛根旺, 等. 离子推力器放电腔数值模拟[J]. 强激光与粒子束, 2010, 22(12):3020-3024. (He Wusheng, Sun Anbang, Mao Genwang, et al. Numerical simulation of ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2010, 22(12): 3020-3024
    [18]
    温正, 钟凌伟, 王一白, 等. 离子推力器加速栅极离子运动规律的数值研究[J]. 强激光与粒子束, 2011, 23(6):1640-1645. (Wen Zheng, Zhong Lingwei, Wang Yibai, et al. Three-dimensional numerical study on motion laws of ions in ion thruster optics[J]. High Power Laser and Particle Beams, 2011, 23(6): 1640-1645
  • Relative Articles

    [1]Ma Liehua, Chen Shuang, Li Hongtao, Peng Xusheng, Zhang Botao, Li Bo, Wang Cheng, Ai Jie. Engineering reliability design and improvement for pulsed neutron scintillation detector[J]. High Power Laser and Particle Beams, 2023, 35(11): 119002. doi: 10.11884/HPLPB202335.230130
    [2]Huang Zhanchang, Zhang Chengjun, Chen Jinchuan, Yang Jianlun, Li Linbo, You Haibo, Wang Dongming, You Wenhao, He Chao, Yang Gaozhao, Zhao Xueshui, Xie Hongwei. Reliability experimental study of optical streak camera[J]. High Power Laser and Particle Beams, 2022, 34(2): 022001. doi: 10.11884/HPLPB202234.210382
    [3]Ma Chenggang, Li Hongtao, Deng Minghai, Cao Ningxiang, Mo Tengfu, Wang Xiao, Zhang Zhiqiang. Experimental research on reliability of 1 MV X-ray system for radiography[J]. High Power Laser and Particle Beams, 2020, 32(2): 025018. doi: 10.11884/HPLPB202032.190378
    [4]Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, Wu Yang. Design of high power terahertz backward wave oscillator[J]. High Power Laser and Particle Beams, 2016, 28(09): 093004. doi: 10.11884/HPLPB201628.160002
    [5]Yang Shi, Ren Shuqing, Lai Dingguo, Zhang Yuying, Yang Li, Yao Weibo, Zhang Yongmin. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27(09): 095006. doi: 10.11884/HPLPB201527.095006
    [6]Cao Fei, Cheng Jian, Pan Zeyue, Chen Yuanyuan. Precision voltage-controlled constant current source for atomic oxygen ground simulation equipment[J]. High Power Laser and Particle Beams, 2015, 27(08): 082002. doi: 10.11884/HPLPB201527.082002
    [7]Zhou Songqing, Guan Xiaowei, Zhang Shiqiang, Qu Pubo, Sun Yanhong, He Minbo. Application of GO methodology to reliability analysis in solid-state laser system[J]. High Power Laser and Particle Beams, 2014, 26(02): 021005. doi: 10.3788/HPLPB201426.021005
    [8]Zhao Juan, Li Bo, Yu Zhiguo, Cao Ningxiang, Huang Lei, Li Xiqin, Huang Bin, Wang Wei, Li Yawei. Design of sampling resistor of high power constant-current source[J]. High Power Laser and Particle Beams, 2012, 24(04): 925-928. doi: 10.3788/HPLPB20122404.0925
    [9]jia zhanqiang, cai jinyan, liang yuying, han chunhui. Reliability assessment of metallized film pulse capacitor[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [10]liu hongwei, yuan jianqiang, liu jinfeng, li hongtao, xie weiping, jiang weihua. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [11]yuan jianqiang, li hongtao, liu hongwei, liu jinfeng, xie weiping, wang xinxin, jiang weihua. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [12]zhao juan, cao kefeng, cao ningxiang, huang bin, yu zhiguo, li xiqin, li bo, huang lei, wang wei, zhu lijun. Development of HL80 low ripple high current computer-controlling constant current source[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]cao ronggang, zou jun, yuan jiansheng. Measurement and analysis of EMF around pulsed power supplies[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [14]meng fan-jiang, guo li-hong, yang gui-long, li dian-jun. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [15]chen guang-yu, yang dong, zhang xiao-min, he shao-bo, zheng wan-guo, you yong. Reliability analysis of Xe-flashlamps of disk amplifier subsystems for laser facility[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [16]zhao feng-li, liu jin-tong, zhou yao-xiang. Development of high power waveguide valve for BEPCⅡ-Linac[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [17]zhao jian-yin, sun quan, zhou jing-lun, he shao-bo, wei xiao-feng. Failure analysis of metallized film pulse capacitors based on accelerated degradation data[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [18]zhao jian-yin, liu fang, sun quan, zhou jing-lun, wei xiao-feng, he shao-bo. Reliability assessment of metallized film capacitors using degradation failure model[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [19]weng ling-wen, niu zhong-xia, lin jing-yu, zhou dong-fang, hou de-ting. Application of BLT equation to electromagnetic interaction of high power microwave[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [20]fu si-zu, huang xiu-guang, wu jiang, ma min xun, he ju-hua, ye jun-jian, gu yuan. Planarity and stability of shock driven directly by multi-beam laserfrom “Shenguang-II” laser facility[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
  • Cited by

    Periodical cited type(4)

    1. 李胜铭,于艺旋,王义普,吴振宇. 赛教融合的数控开关恒流源设计. 实验室科学. 2020(04): 74-79 .
    2. 程俊平,周长林,余道杰,徐志坚,张栋耀. 基于供电网络传导耦合的FPGA电磁敏感特性分析. 强激光与粒子束. 2019(02): 64-70 . 本站查看
    3. 赵娟,曹宁翔,黄斌,李波,张信,黄宇鹏,李洪涛. 神龙-Ⅲ直线感应加速器高稳定度恒流源控制系统. 强激光与粒子束. 2019(04): 89-93 . 本站查看
    4. 李佳戈,苏宗文,任海萍. 医疗器械电磁兼容试验中工作模式的确定. 中国医疗设备. 2019(09): 17-19+23 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.5 %FULLTEXT: 24.5 %META: 73.4 %META: 73.4 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %上海: 1.0 %上海: 1.0 %中山: 0.1 %中山: 0.1 %丽水: 0.2 %丽水: 0.2 %俄罗斯莫斯科: 0.3 %俄罗斯莫斯科: 0.3 %保定: 0.3 %保定: 0.3 %内江: 0.1 %内江: 0.1 %北京: 10.8 %北京: 10.8 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.3 %合肥: 0.3 %天津: 0.1 %天津: 0.1 %安康: 0.1 %安康: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 2.8 %张家口: 2.8 %悉尼: 0.7 %悉尼: 0.7 %成都: 0.3 %成都: 0.3 %扬州: 0.4 %扬州: 0.4 %普洱: 0.1 %普洱: 0.1 %杭州: 1.6 %杭州: 1.6 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 0.7 %漯河: 0.7 %漳州: 0.2 %漳州: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 9.8 %芒廷维尤: 9.8 %芝加哥: 0.1 %芝加哥: 0.1 %莫斯科: 0.7 %莫斯科: 0.7 %衢州: 0.4 %衢州: 0.4 %西宁: 60.0 %西宁: 60.0 %西安: 0.4 %西安: 0.4 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndia上海中山丽水俄罗斯莫斯科保定内江北京十堰南京台州合肥天津安康常州广州张家口悉尼成都扬州普洱杭州桃园武汉深圳温州湖州漯河漳州福州秦皇岛绵阳芒廷维尤芝加哥莫斯科衢州西宁西安运城邯郸郑州长沙阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (1636) PDF downloads(60) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return