Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103
Citation: Sun Bangyong, Wu Siyuan. Structured light technology based on gray code and six-step phase shift method[J]. High Power Laser and Particle Beams, 2021, 33: 021004. doi: 10.11884/HPLPB202133.200242

Structured light technology based on gray code and six-step phase shift method

doi: 10.11884/HPLPB202133.200242
  • Received Date: 2020-08-19
  • Rev Recd Date: 2020-12-18
  • Publish Date: 2021-01-07
  • Structured light technology is a typical method for capturing the three-dimensional point cloud data of realistic objects. Structured light images are projected on the surface of the object, which are modulated by the height of the object. Then, the modulated structured light is captured by the camera. Finally, the triangulation principle is used to calculate the three-dimensional surface shape data. To scan the high-precision three-dimensional point cloud of the object, this paper proposes a structured light technology based on Gray code and six-step phase shift method. The structured light based on Gray code is composed of 7 black and white fringe periodic images, and the image can be divided into 128 areas through the gray code decoding operation; the structured light based on six-step phase shift is composed of 6 cosine periodic images with phase difference. Phase shift decoding can subdivide each of the 128 areas into a single pixel. Compared with the cumbersome calculation of six Moiré fringes, the proposed structured light technology based on six-step phase-shift method has less calculation. In the simulation experiment and actual test, the proposed structured light technology showed excellent performance.
  • [1]
    Wilm J, Olesen O V, Larsen R. SLStudio: Open-source framework for real-time structured light[C]//IEEE International Conference on Image Processing Theory. 2014: 1-4.
    [2]
    Gu Q, Herakleous K, Poullis C. 3DUNDERWORLD-SLS: An open-source structured-light scanning system for rapid geometry acquisition[J]. EprintArxiv, 2014.
    [3]
    Scharstein D, Szeliski R. High-accuracy stereo depth maps using structured light[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2003: 1-1.
    [4]
    Zhang Q, Su X, Xiang L, et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 2012, 50(4): 574-579.
    [5]
    Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Appl Opt, 1999, 38(31): 6565-6573.
    [6]
    Lin H, Ma Z F, Yao C H, et al. 3D measurement technology based on binocular vision using a combination of gray code and phase-shift structured light[J]. Acta Electronica Sinica, 2013, 41(1): 24-28.
    [7]
    Xi Juntong. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection[J]. Optical Engineering, 2008, 47(11): 1273-1279.
    [8]
    Yu Xiaoyang, Wu Haibin, Yin Liping. 3D measurement technology based on structured light by combining Gray code with phase-shift[J]. Chinese Journal of Scientific Instrument, 2007, 28(12): 2152.
    [9]
    Veksler, O. Stereo correspondence by dynamic programming on a tree[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2005.
    [10]
    Gimel"Farb G. Probabilistic regularisation and symmetry in binocular dynamic programming stereo[J]. Pattern Recognition Letters, 2002, 23(4): 431-442.
    [11]
    Wang L, Liao M, Gong M, et al. High-quality real-time stereo using adaptive cost aggregation and dynamic programming[C]//International Symposium on 3D Data Processing, Visualization and Transmission. 2006: 798-805.
    [12]
    敖黎铭, 徐晓, 李熙. 双目结构光高精度三维复原算法的快速实现[J]. 传感器与微系统, 2018, 316(6):134-136. (Ao Liming, Xu Xiao, Li Xi. Fast implementation of high precision 3D restoration algorithm based on binocular structured light[J]. Transducer and Microsystem Technology, 2018, 316(6): 134-136
    [13]
    王长波, 谢明红. 格雷编码与相移结合的双目三维重构[J]. 计算机工程, 2013, 39(5):178-182. (Wang Changbo, Xie Minghong. Binocular three-dimension reconstruction combined with Gray coding and phase-shift[J]. Computer engineering, 2013, 39(5): 178-182 doi: 10.3969/j.issn.1000-3428.2013.05.039
    [14]
    张广军, 王红. 结构光三维视觉系统研究[J]. 航空学报, 1999, 20(4):365-367. (Zhang Guangjun, Wang Hong. Structured light 3D vision[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(4): 365-367 doi: 10.3321/j.issn:1000-6893.1999.04.019
  • Relative Articles

    [1]Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478
    [2]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [3]Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143
    [4]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [5]Shi Tao, Ma Jimin, Qiu Youheng, Huang Hongwen, Li Zhenghong, Qian Dazhi. Global variance reduction based on forward Monte Carlo calculation[J]. High Power Laser and Particle Beams, 2018, 30(1): 016006. doi: 10.11884/HPLPB201830.170163
    [6]Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481
    [7]Lü Wenhui, Guo Huiping, Lü Ning, Hou Yijie, Wang Xiaotian, Zhao Kuo, Tian Chenyang. Design of alignment and shielding structure for small D-D neutron tube with 2.45 MeV neutron source[J]. High Power Laser and Particle Beams, 2017, 29(12): 126008. doi: 10.11884/HPLPB201729.170225
    [8]Dong Xiaoxia, Liu Qiang, Zhao Xiang, Yan Liping, Zhou Haijing, Huang Kama. Boundary condition in analysis of high-frequency electromagnetic field coupling to non-uniform multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2017, 29(09): 093201. doi: 10.11884/HPLPB201729.170058
    [9]Yexin Ouwen, Liu Shichang, Wang Kan. Research on RMC neutronics-thermal hydraulics coupling based on universal coupling methodology[J]. High Power Laser and Particle Beams, 2017, 29(01): 016003. doi: 10.11884/HPLPB201729.160190
    [10]Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029
    [11]Xu Yang, Wei Biao, Mao Benjiang, Liu Yixin, Feng Peng. Shielding research of minitype reference radiation device based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2016, 28(09): 096004. doi: 10.11884/HPLPB201628.160018
    [12]Sun Jialong, Yu Ganglin, She Ding, Wang Kan. Development of repeat geometry function in reactor Monte Carlo code RMC[J]. High Power Laser and Particle Beams, 2013, 25(01): 219-222. doi: 10.3788/HPLPB20132501.0219
    [13]Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189
    [14]Yu Hui, Zin Cho. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels[J]. High Power Laser and Particle Beams, 2013, 25(01): 143-146. doi: 10.3788/HPLPB20132501.0143
    [15]Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211
    [16]Xiao Bo, Huang Jiaofeng, Zhang Xuan, Jing Yuefeng. "Measurement” of parameters in discrete program using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2013, 25(01): 138-142. doi: 10.3788/HPLPB20132501.0138
    [17]Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2975-2978. doi: 10.3788/HPLPB20122412.2975
    [18]Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965
    [19]luan xiting, deng yongfeng, tan chang, han xianwei, mao genwang. Properties of electron-beam produced air plasma in nonuniform magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [20]pan ruzheng, wang jue, yan ping, sun guangsheng, zhang dongdong, zhou yuan, li mintang. Monte Carlo simulation of laser-triggered flashover in air condition[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
  • Cited by

    Periodical cited type(7)

    1. 李雪宾,张鑫,简家文. 带有温度补偿的高灵敏度光纤布喇格光栅水听器. 光通信技术. 2020(04): 26-29 .
    2. 王小羊. 光栅常数测定方法探讨. 电大理工. 2018(01): 1-2+8 .
    3. 郭瑜,朱星盈,倪屹,王娟,李岱林. 三维光纤布拉格光栅应变传感器的温度补偿技术. 激光与光电子学进展. 2018(05): 82-87 .
    4. 孙诗晴,初凤红,卢家焱. 光纤布拉格光栅传感器交叉敏感问题的研究进展. 激光与光电子学进展. 2017(04): 82-91 .
    5. 赵亚丽,李玉华,张春青. 基于DWDM与MATLAB的光纤光栅压力传感解调系统的研究. 承德石油高等专科学校学报. 2016(06): 54-56+84 .
    6. 巩鑫,华灯鑫,李仕春,王骏,代晨昱. 时分复用光纤光栅系统的边缘滤波解调与标定. 中国激光. 2016(10): 244-252 .
    7. 姜学鹏,陈姝,周健. 风载环境下隧道光纤光栅火灾探测器响应和报警特性. 隧道建设. 2016(10): 1202-1206 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 71.5 %META: 71.5 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.9 %其他: 2.9 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.3 %[]: 0.3 %上海: 0.7 %上海: 0.7 %上饶: 0.2 %上饶: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %北京: 18.4 %北京: 18.4 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.2 %大连: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 1.0 %张家口: 1.0 %成都: 0.1 %成都: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.5 %深圳: 0.5 %湖州: 0.1 %湖州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %芝加哥: 0.6 %芝加哥: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 56.8 %西宁: 56.8 %西安: 0.1 %西安: 0.1 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.2 %郑州: 0.2 %重庆: 0.2 %重庆: 0.2 %长治: 0.1 %长治: 0.1 %其他ChinaIndiaKorea Republic ofSeattle[]上海上饶中山临汾丹东丽水北京台州合肥哥伦布大连广州张家口成都晋城普洱杭州桃园武汉沈阳济南深圳湖州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安达尔斯运城郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (2789) PDF downloads(192) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return