Li Jianzhi, Sun Baochen. Theory analysis of novel fiber Bragg grating temperature compensated method based on thermal stress[J]. High Power Laser and Particle Beams, 2015, 27: 024115. doi: 10.11884/HPLPB201527.024115
Citation: Qin Hongcai, Yuan Chengwei, Ning Hui, et al. Design of high power helical array antenna fed from planar waveguide[J]. High Power Laser and Particle Beams, 2021, 33: 023002. doi: 10.11884/HPLPB202133.200252

Design of high power helical array antenna fed from planar waveguide

doi: 10.11884/HPLPB202133.200252
  • Received Date: 2020-08-29
  • Rev Recd Date: 2020-12-16
  • Publish Date: 2021-01-07
  • High power helical array antenna fed from planar waveguide is a new type antenna to realize the directional radiation of circularly polarized microwave, which works in C-band. The complexity and the height of the feed structure are reduced by using the planar waveguide. The structure of the basic electric probe is improved, and the coupling quantity is adjusted by controlling the central angle of the sector gap, and the reflection is eliminated by the upper and lower ridge structure. A new structure of short helical antenna is designed to optimize the axial ratio and reflection by separating the parameters, and the axial ratio of the antenna is less than 0.5 dB in the range of −7° to 7°. A 20 units linear feed array is constructed to realize equal amplitude feed by coupling energy from the planar waveguide through the electric probe structure. Finally, a helical array antenna with 20×20 units working in 4.3 GHz is simulated, and the results show that the gain of the antenna is 31.6 dB, and the aperture efficiency is 74%. The reflection is less than −16 dB within the frequency band range of 4.11−4.43 GHz and the power capacity is 3.6 GW.
  • [1]
    Nakano H, Takeda H, Kitamura Y, et a1. Low-profile helical array antenna fed from a radial waveguide[J]. IEEE Trans Antennas and Propagation, 1992, 40(3): 279-284.
    [2]
    刘庆想, 李相强, 袁成卫, 等. 高功率双层径向线螺旋阵列天线理论分析与数值模拟[J]. 电子学报, 2005, 33(12):2231-2234. (Liu Qingxiang, Li Xiangqiang, Yuan Chengwei, et al. Theoretical analysis and numerical simulation of a high power helical array antenna fed from double-layer radial waveguide[J]. Acta Electronica Sinica, 2005, 33(12): 2231-2234 doi: 10.3321/j.issn:0372-2112.2005.12.030
    [3]
    Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Trans Antennas and Propagation, 2008, 59(9): 2943-2948.
    [4]
    张健穹, 刘庆想, 胡舰, 等. 92单元三角栅格径向线子阵馈电系统的设计和实验研究[J]. 强激光与粒子束, 2015, 27:043003. (Zhang Jianqiong, Liu Qingxiang, Hu Jian, et al. Design and experiment research on 92-element triangle-grid subarray radial-line feed network[J]. High Power Laser and Particle Beams, 2015, 27: 043003 doi: 10.11884/HPLPB201527.043003
    [5]
    赵玮琛, 张政权, 张健穹等. 侧馈式紧凑型扁波导螺旋阵列天线的设计[J]. 电子元件与材料, 2018, 37(6):78-82. (Zhao Weichen, Zhang Zhengquan, Zhang Jianqiong, er al. Design of helical array antenna fed from compact side-feed slab waveguide[J]. Electronic Components and Materials, 2018, 37(6): 78-82
    [6]
    Yu Longzhou, Yuan Chengwei, He Juntao, et a1. Design of a slot-coupled radial line helical array antenna for high power microwave applications[J]. AIP Advances, 2017, 7: 095101.
    [7]
    Yu Longzhou, Yuan Chengwei, He Juntao, et a1. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Trans Plasma Science, 2019, 47(1): 535-541.
    [8]
    张宏伟, 刘朝阳, 于志华, 等. 高功率无移相器自旋转波束扫描天线设计[J]. 强激光与粒子束, 2018, 30:073008. (Zhang Hongwei, Liu Chaoyang, Yu Zhihua, et al. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30: 073008 doi: 10.11884/HPLPB201830.170531
    [9]
    李相强. 高功率径向线螺旋阵列天线研究[D]. 成都: 西南交通大学, 2008: 27-29.

    Li Xiangqiang. Investigations of high-power radial line helical array antenna[D]. Chengdu: Southwest Jiaotong University, 2008: 27-29
    [10]
    杨一明. 高功率微波可扫描波导缝隙阵列天线技术研究[D]. 长沙: 国防科技大学, 2014: 46-47.

    Yang Yiming. Investigation on beam steering slotted waveguide array antenna for high power applications[D]. Changsha: National University of Defense Technology, 2014: 46-47
    [11]
    Nakano H, Takeda H, Honma T, et al. Extremely low-profile helix radiating a circularly polarized wave[J]. IEEE Trans Antennas and Propagation, 1991, 39(6): 754-757.
    [12]
    余龙舟. 高功率微波新型扫描阵列天线研究[D]. 长沙: 国防科技大学, 2019: 24-27.

    Yu Longzhou. Novel high power microwave scanning array antenna[D]. Changsha: National University of Defense Technology, 2019: 24-27
    [13]
    李相强, 刘庆想, 赵柳. 短螺旋天线改进设计[J]. 微波学报, 2009, 25(1):51-54. (Li Xiangqiang, Liu Qingxiang, Zhao Liu. Amelioration of low-profile helix antenna[J]. Journal of Microwaves, 2009, 25(1): 51-54
    [14]
    Nakano H, Asaka N, Yamauchi J. Radiation characteristics of short helical antenna and its mutual coupling[J]. Electronics Letters, 1984, 20(5): 202-204.
    [15]
    Yang Yiming, Yuan Chengwei, Qian Baoliang. A beam steering antenna for X-band high power applications[J]. International Journal of Electronics and Communications, 2014, 68: 763-766.
  • Relative Articles

    [1]Huang Jinglin, Zhou Minjie, Le Wei, Chen Guo, Ni Shuang, Niu Gao, Li Zeyu, Zhao Zongqing, He Zhibing, Li Bo, Zhao Songnan, Zhang Baohan, Du Kai. Detection of spike protein of SARS-CoV-2 by surface enhanced Raman spectroscopy[J]. High Power Laser and Particle Beams, 2020, 32(6): 069001. doi: 10.11884/HPLPB202032.200145
    [2]Li Mingbin, Wu Xuezhong, Dong Peitao, Chen Jian. Fabrication of gold flower-like arrays based on nanosphere lithography for Raman enhancement[J]. High Power Laser and Particle Beams, 2015, 27(02): 024153. doi: 10.11884/HPLPB201527.024153
    [3]Wang Yanbin. Feasibility study of ICF ignition by swift heavy ions irradiation[J]. High Power Laser and Particle Beams, 2013, 25(01): 67-70. doi: 10.3788/HPLPB20132501.0067
    [4]Lu Jianxin, Lan Xiaofei, Huang Yongsheng, Wang Leijian, Xi Xiaofeng, Tang Xiuzhang, Yang Dawei. Energy spectra of protons driven by ultra-short laser interaction with thin gold foils[J]. High Power Laser and Particle Beams, 2012, 24(08): 1879-1881. doi: 10.3788/HPLPB20122408.1879
    [5]huang yongjun, wen guangjun, li tianqian, xie kang. Effect of negative permeability on negative permittivity in electromagnetic metamaterials[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [6]hu zhang-hu, wang qiong, song yuan-hong, wang you-nian. Polarization effect and energy loss in interactions of charged particles with magnetized plasmas[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [7]guo bin, tang yong-jian, luo jiang-shan, cheng jian-ping. In-situ growth of gold nanostructure on glass substrates by light irradiation and their spectral properties[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [8]guo bin, tang yong-jian, cheng jian-ping, luo jiang-shan. Preparation of mesoporous SiO2 nanorods and anchoring of Au nanoparticles on their surface[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [9]cai da-feng, gu yu-qiu, zheng zhi-jian, zhou wei-min, jiao chun-ye, wen tian-shu, chunyu shu-tai. Fast electron energy distribution in femtosecond laser plasma interactions[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [10]lin xiao-dong, wu zheng-mao, xia guang-qiong, chen jian-guo. Numerical research of interactions between Gaussian-shaped spatial solitons[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [11]ma yan-yun, chang wen-wei, huang wei, zhuo hong-bing, yin yan. Local oscillating electron heating mechanism during laser plasma interaction[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [12]yuan zhong-cai, shi jia-ming, wang jia-chun. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [13]zheng li-yi, pan xu-dong, chen xing-wu, song hai-feng. Interacting multiple model algorithm in target tracking[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [14]wang guang-chang, zheng zhi-jian, yang xiang-dong, gu yu-qiu, liu hong-jie, wen tian-shu, ge fang-fang, jiao chun-ye, zhou wei-min, zhang shuang-gen, wang xiang-xian. Measurement of transition radiation in femtosecond laser-solid target interaction[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [15]jiao chun-ye, gu yu-qiu, zhang bao-han, zheng zhi-jian, yang xiang-dong, cai da-feng, zhou wei-min, wen tian-shu, wang guang-chang, chen hao. Measurement of spontaneous magnetic field in the interactions of femtosecond laser with solid targets[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [16]yin yan, chang wen-wei, ma yan-yun, guo shao-feng, xu han. Energetic ions generation in the interaction between ultrashort ultraintense laser pulse and solid target[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [17]zhou wei-min, gu yu-qiu, ding yong-kun, zheng zhi-jian, cai da-feng, chunyu shu-tai, wen tian-shu, chen hao, jiao chun-ye, ge fang-fang, wang guang-chang, you yong-lu, he ying-ling, . Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target[J]. High Power Laser and Particle Beams, 2004, 16(11): 0- .
    [18]ma li-ke, lu qi-sheng, zhao guo-min, jiang hou-man. Geometrical aspects of laser heating the flying cylinder[J]. High Power Laser and Particle Beams, 2004, 16(12): 0- .
    [19]he xu zhao, yi shi he. Interaction of power laser beam with supersonic free shear layer[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- .
    [20]peng hui-min, he bin, zheng wu-di, yu chnn-fu. Residual epectron energy in light element gases produced by linear polarized high intense laser[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 姜恒,张哲,江申,董妥. 表面增强拉曼光谱在呼吸道病毒检测中的研究进展. 检验医学与临床. 2023(14): 2096-2099 .
    2. 鲁佳佳,杨举,古捷,苏丽娇,陶欣,张郡童,陈艳,杨丽娟. 胺基化柱芳烃修饰的金纳米粒子及其催化活性分析. 分析化学. 2022(12): 1832-1844 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.1 %FULLTEXT: 28.1 %META: 68.8 %META: 68.8 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.5 %其他: 0.5 %China: 0.9 %China: 0.9 %College Station: 0.2 %College Station: 0.2 %India: 0.2 %India: 0.2 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Latvia: 0.2 %Latvia: 0.2 %Poland: 0.1 %Poland: 0.1 %Taiwan, China: 0.2 %Taiwan, China: 0.2 %United States: 0.9 %United States: 0.9 %[]: 0.9 %[]: 0.9 %上海: 1.5 %上海: 1.5 %东京: 0.3 %东京: 0.3 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %京都: 0.1 %京都: 0.1 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 3.4 %北京: 3.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 1.1 %台州: 1.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %四平: 0.2 %四平: 0.2 %夏延: 0.1 %夏延: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %孝感: 0.1 %孝感: 0.1 %孟买: 0.2 %孟买: 0.2 %宁波: 0.1 %宁波: 0.1 %宣城: 0.1 %宣城: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %廊坊: 0.1 %廊坊: 0.1 %延边朝鲜族自治州: 0.1 %延边朝鲜族自治州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.2 %徐州: 0.2 %成都: 1.0 %成都: 1.0 %扬州: 0.2 %扬州: 0.2 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.1 %旧金山: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.2 %杭州: 2.2 %柳州: 0.2 %柳州: 0.2 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 1.3 %绵阳: 1.3 %芒廷维尤: 25.1 %芒廷维尤: 25.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.3 %苏州: 0.3 %衢州: 0.9 %衢州: 0.9 %西宁: 41.4 %西宁: 41.4 %西安: 0.2 %西安: 0.2 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %金华: 0.3 %金华: 0.3 %银川: 0.1 %银川: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 0.2 %长沙: 0.2 %长治: 0.3 %长治: 0.3 %阳泉: 0.1 %阳泉: 0.1 %鞍山: 0.1 %鞍山: 0.1 %韩国大田: 0.2 %韩国大田: 0.2 %首尔: 0.2 %首尔: 0.2 %黑河: 0.1 %黑河: 0.1 %其他其他ChinaCollege StationIndiaKorea Republic ofLatviaPolandTaiwan, ChinaUnited States[]上海东京中卫中山临汾丹东丽水京都保定六安兰州内江北京十堰南京南平南昌厦门台州合肥哈尔滨哥伦布嘉兴四平夏延大连天津太原威海孝感孟买宁波宣城常德平顶山广州廊坊延边朝鲜族自治州张家口徐州成都扬州无锡旧金山昆明晋城普洱朝阳杭州柳州武汉沈阳洛阳海口深圳温州渭南湖州漯河烟台盐城石家庄福州秦皇岛纽约绍兴绵阳芒廷维尤芝加哥苏州衢州西宁西安西雅图诺沃克贵阳运城连云港邯郸郑州重庆金华银川长春长沙长治阳泉鞍山韩国大田首尔黑河

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1692) PDF downloads(181) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return