Wu Hanyu, Zhang Xinjun, Wang Liangping, et al. Restraint of focus spot drift of electron-beam in bremsstrahlung radiation[J]. High Power Laser and Particle Beams, 2015, 27: 075105. doi: 10.11884/HPLPB201527.075105
Citation: Qin Hongcai, Yuan Chengwei, Ning Hui, et al. Design of high power helical array antenna fed from planar waveguide[J]. High Power Laser and Particle Beams, 2021, 33: 023002. doi: 10.11884/HPLPB202133.200252

Design of high power helical array antenna fed from planar waveguide

doi: 10.11884/HPLPB202133.200252
  • Received Date: 2020-08-29
  • Rev Recd Date: 2020-12-16
  • Publish Date: 2021-01-07
  • High power helical array antenna fed from planar waveguide is a new type antenna to realize the directional radiation of circularly polarized microwave, which works in C-band. The complexity and the height of the feed structure are reduced by using the planar waveguide. The structure of the basic electric probe is improved, and the coupling quantity is adjusted by controlling the central angle of the sector gap, and the reflection is eliminated by the upper and lower ridge structure. A new structure of short helical antenna is designed to optimize the axial ratio and reflection by separating the parameters, and the axial ratio of the antenna is less than 0.5 dB in the range of −7° to 7°. A 20 units linear feed array is constructed to realize equal amplitude feed by coupling energy from the planar waveguide through the electric probe structure. Finally, a helical array antenna with 20×20 units working in 4.3 GHz is simulated, and the results show that the gain of the antenna is 31.6 dB, and the aperture efficiency is 74%. The reflection is less than −16 dB within the frequency band range of 4.11−4.43 GHz and the power capacity is 3.6 GW.
  • [1]
    Nakano H, Takeda H, Kitamura Y, et a1. Low-profile helical array antenna fed from a radial waveguide[J]. IEEE Trans Antennas and Propagation, 1992, 40(3): 279-284.
    [2]
    刘庆想, 李相强, 袁成卫, 等. 高功率双层径向线螺旋阵列天线理论分析与数值模拟[J]. 电子学报, 2005, 33(12):2231-2234. (Liu Qingxiang, Li Xiangqiang, Yuan Chengwei, et al. Theoretical analysis and numerical simulation of a high power helical array antenna fed from double-layer radial waveguide[J]. Acta Electronica Sinica, 2005, 33(12): 2231-2234 doi: 10.3321/j.issn:0372-2112.2005.12.030
    [3]
    Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Trans Antennas and Propagation, 2008, 59(9): 2943-2948.
    [4]
    张健穹, 刘庆想, 胡舰, 等. 92单元三角栅格径向线子阵馈电系统的设计和实验研究[J]. 强激光与粒子束, 2015, 27:043003. (Zhang Jianqiong, Liu Qingxiang, Hu Jian, et al. Design and experiment research on 92-element triangle-grid subarray radial-line feed network[J]. High Power Laser and Particle Beams, 2015, 27: 043003 doi: 10.11884/HPLPB201527.043003
    [5]
    赵玮琛, 张政权, 张健穹等. 侧馈式紧凑型扁波导螺旋阵列天线的设计[J]. 电子元件与材料, 2018, 37(6):78-82. (Zhao Weichen, Zhang Zhengquan, Zhang Jianqiong, er al. Design of helical array antenna fed from compact side-feed slab waveguide[J]. Electronic Components and Materials, 2018, 37(6): 78-82
    [6]
    Yu Longzhou, Yuan Chengwei, He Juntao, et a1. Design of a slot-coupled radial line helical array antenna for high power microwave applications[J]. AIP Advances, 2017, 7: 095101.
    [7]
    Yu Longzhou, Yuan Chengwei, He Juntao, et a1. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Trans Plasma Science, 2019, 47(1): 535-541.
    [8]
    张宏伟, 刘朝阳, 于志华, 等. 高功率无移相器自旋转波束扫描天线设计[J]. 强激光与粒子束, 2018, 30:073008. (Zhang Hongwei, Liu Chaoyang, Yu Zhihua, et al. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30: 073008 doi: 10.11884/HPLPB201830.170531
    [9]
    李相强. 高功率径向线螺旋阵列天线研究[D]. 成都: 西南交通大学, 2008: 27-29.

    Li Xiangqiang. Investigations of high-power radial line helical array antenna[D]. Chengdu: Southwest Jiaotong University, 2008: 27-29
    [10]
    杨一明. 高功率微波可扫描波导缝隙阵列天线技术研究[D]. 长沙: 国防科技大学, 2014: 46-47.

    Yang Yiming. Investigation on beam steering slotted waveguide array antenna for high power applications[D]. Changsha: National University of Defense Technology, 2014: 46-47
    [11]
    Nakano H, Takeda H, Honma T, et al. Extremely low-profile helix radiating a circularly polarized wave[J]. IEEE Trans Antennas and Propagation, 1991, 39(6): 754-757.
    [12]
    余龙舟. 高功率微波新型扫描阵列天线研究[D]. 长沙: 国防科技大学, 2019: 24-27.

    Yu Longzhou. Novel high power microwave scanning array antenna[D]. Changsha: National University of Defense Technology, 2019: 24-27
    [13]
    李相强, 刘庆想, 赵柳. 短螺旋天线改进设计[J]. 微波学报, 2009, 25(1):51-54. (Li Xiangqiang, Liu Qingxiang, Zhao Liu. Amelioration of low-profile helix antenna[J]. Journal of Microwaves, 2009, 25(1): 51-54
    [14]
    Nakano H, Asaka N, Yamauchi J. Radiation characteristics of short helical antenna and its mutual coupling[J]. Electronics Letters, 1984, 20(5): 202-204.
    [15]
    Yang Yiming, Yuan Chengwei, Qian Baoliang. A beam steering antenna for X-band high power applications[J]. International Journal of Electronics and Communications, 2014, 68: 763-766.
  • Relative Articles

    [1]Shang Tianbo, Yang Wei¹, Song Mengmeng, Zhou Qianhong. A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges[J]. High Power Laser and Particle Beams, 2024, 36(3): 033002. doi: 10.11884/HPLPB202436.230335
    [2]Fang Jianwei, Hong Yuanzhi, Wang Yigang, Wei Wei, Zhu Bangle, Ge Xiaoqin, Bian Baoyuan, Zhang Wenli, Wang Yong. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33(7): 074003. doi: 10.11884/HPLPB202133.210035
    [3]He Yun, Yang Jing, Miao Guanghui, Zhang Na, Cui Wanzhao. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32(3): 033003. doi: 10.11884/HPLPB202032.190318
    [4]Zhang Xiaodong, Ouyang Xiaoping, Weng Xiufeng, Jiang Wen'gang, Zhang Jianfu, Tan Xinjian, He Junzhang, Wei Chen. Gamma ray sensitivity of neutron detector based on microchannel plate[J]. High Power Laser and Particle Beams, 2018, 30(4): 044002. doi: 10.11884/HPLPB201830.170388
    [5]Meng Xiaohui, Dong Zhiwei. Simulation study of secondary electron effect of proton beam bombardment on metallic target surface[J]. High Power Laser and Particle Beams, 2018, 30(6): 064002. doi: 10.11884/HPLPB201830.170498
    [6]Li Kaiwei. Secondary electron multipacting in proton bunch[J]. High Power Laser and Particle Beams, 2016, 28(09): 095102. doi: 10.11884/HPLPB201628.151292
    [7]Ke Jianlin, Hu Yonghong, Zhou Changgeng, Qiu Rui, He Tie, Liu Yuguo. Measurement of beam currents downstream from strong electric field[J]. High Power Laser and Particle Beams, 2016, 28(11): 115102. doi: 10.11884/HPLPB201527.160119
    [8]Wang Qiangqiang, Deng Keli, Deng Caibo, Deng Bo, Yuan Zheng, Chen Tao, Dong Jianjun, Cao Zhurong, Liu Shenye, Jiang Shaoen. Three-dimensional numeric simulation of multiplication process of secondary electrons in microchannel plate[J]. High Power Laser and Particle Beams, 2015, 27(12): 124005. doi: 10.11884/HPLPB201527.124005
    [9]Shao Yan, Lu Zhongtao, Xu Derong, Xu Hongliang. Numerical simulation of electron beam current amplification characteristic in diamond film[J]. High Power Laser and Particle Beams, 2015, 27(05): 055105. doi: 10.11884/HPLPB201527.055105
    [10]Zhang Zhongbing, Chen Liang, Ruan Jinlu, Liu Jinliang, Ouyang Xiaoping, Ye Ming, He Yongning, Liu Jun, Liu Linyue. Effects of secondary electron emission on high-precision intensity measurements of proton[J]. High Power Laser and Particle Beams, 2014, 26(09): 094004. doi: 10.11884/HPLPB201426.094004
    [11]Li Feng, Wang Meng, Ren Jing, Fang Dongfan, Kang Junjun, Xu Le, Yang Zun. Characteristics of grooved insulator flashover under pulsed voltage[J]. High Power Laser and Particle Beams, 2014, 26(04): 045049. doi: 10.11884/HPLPB201426.045049
    [12]You Jianwei, Zhang Jianfeng, Li Yun, Wang Hongguang. Research and extension of Vaughan’s secondary electron emission[J]. High Power Laser and Particle Beams, 2013, 25(11): 3035-3039. doi: 10.3788/HPLPB20132511.3035
    [13]Wang Xiaohu, Yang Zhen, Zhang Linwen, Long Jidong, Wei Tao, Yang Guojun, Zhang Zhuo. An ion beam profiler based on secondary electron emission[J]. High Power Laser and Particle Beams, 2013, 25(08): 2121-2124. doi: 10.3788/HPLPB20132508.2121
    [14]yang zhiwen, chen tao, yuan zheng, liu shenye, xiao shali. Analytic simulation research on steady-state characteristics of X-ray framing camera[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [15]xie aigen, zhang jian, wu hongyan, wang tiebang. Angular distribution of secondary electron emitted from polycrystalline surfaces[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [16]zhao xiaoyun, liu jinyuan, ni zhixiang, he juan. Characteristic of plasma sheath in the presence of secondary electron emission and negative ions[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [17]ying xuhua, hao jianhong, fan jieqing. Analysis of two-surface multipactor discharge[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [18]xiao qiong, peng xiao-hua. Non-linear pressure rise with beam current in BEPCⅡ positron ring[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [19]chen xi, du zheng-wei, gong ke. Influence of circuit during injection of EMP into bipolar junction transitor[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [20]xie ai-gen, pei yuan-ji, sun hong-bing, wang rong. Relation of incident energy of high energy primary electron and real efficient secondary electron emission coefficient of metal emitter[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.1 %FULLTEXT: 22.1 %META: 75.9 %META: 75.9 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %Kao-sung: 0.2 %Kao-sung: 0.2 %[]: 0.1 %[]: 0.1 %上海: 1.8 %上海: 1.8 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 17.7 %北京: 17.7 %十堰: 0.1 %十堰: 0.1 %台州: 1.0 %台州: 1.0 %合肥: 0.5 %合肥: 0.5 %哈尔科夫: 0.3 %哈尔科夫: 0.3 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.1 %嘉兴: 0.1 %大田广域: 0.1 %大田广域: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.6 %天津: 0.6 %宁波: 0.4 %宁波: 0.4 %宣城: 0.5 %宣城: 0.5 %广州: 0.7 %广州: 0.7 %张家口: 0.5 %张家口: 0.5 %成都: 0.1 %成都: 0.1 %扬州: 0.9 %扬州: 0.9 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %景德镇: 0.1 %景德镇: 0.1 %杭州: 1.6 %杭州: 1.6 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %淄博: 0.3 %淄博: 0.3 %淮南: 0.1 %淮南: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.5 %温州: 0.5 %湖州: 0.9 %湖州: 0.9 %漯河: 2.0 %漯河: 2.0 %潍坊: 0.1 %潍坊: 0.1 %白银: 0.2 %白银: 0.2 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 22.6 %芒廷维尤: 22.6 %芝加哥: 0.5 %芝加哥: 0.5 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 36.6 %西宁: 36.6 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %辽阳: 0.1 %辽阳: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %重庆: 0.3 %重庆: 0.3 %钦州: 0.2 %钦州: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.4 %长治: 0.4 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他ChinaIndiaKao-sung[]上海中山临汾丹东兰州北京十堰台州合肥哈尔科夫哥伦布嘉兴大田广域大连天津宁波宣城广州张家口成都扬州昆明晋城普洱景德镇杭州武汉沈阳淄博淮南深圳温州湖州漯河潍坊白银石家庄秦皇岛绵阳肇庆芒廷维尤芝加哥衢州襄阳西宁西安贵阳辽阳运城邯郸郑州重庆钦州长沙长治香港特别行政区马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1697) PDF downloads(181) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return