Zhang Xue, Wang Tao, Yu Qianqian, et al. Research progress of high-power waveguide window[J]. High Power Laser and Particle Beams, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257
Citation: Zhang Xue, Wang Tao, Yu Qianqian, et al. Research progress of high-power waveguide window[J]. High Power Laser and Particle Beams, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257

Research progress of high-power waveguide window

doi: 10.11884/HPLPB202133.200257
  • Received Date: 2020-09-06
  • Rev Recd Date: 2020-11-04
  • Publish Date: 2021-01-07
  • High-power waveguide window is a critical component of high-power klystron and accelerator. The RF breakdown of the waveguide window always cause the failure of the high-power klystron. In this paper, the research progress of high-power waveguide window in the international vacuum electronics field is introduced. The research status, manufacturing requirement, and RF breakdown mechanism of the classical pill-box window are presented at first. Then the characters of some new type waveguide windows such as the tapered window, travelling wave in ceramic window, mixed-mode window, and over-mode window are summarized. Some breakdown suppression technologies like changing the material character of the window disk, changing the surface configuration of the window disk, using the positive dielectric angle, applying DC electric field or DC magnetic field, changing the waveform of transverse electric field are emphasized at the end.

  • [1]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Desgin, manufacture and application of high power klystron. Beijing: National Defence Industry Press, 2010
    [2]
    Kazakov S. High-power RF sources and components for linear colliders[R]. Fermi National Accelerator Laboratory, 2007, 15.
    [3]
    丁耀根. 大功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25. (Ding Yaogen. Technical status and latest progress of high power klystron[J]. Vacuum Electronics, 2020(1): 1-25
    [4]
    朱小芳, 胡权, 胡玉禄, 等. 大功率同轴与波导窗的结构与设计原理综述[J]. 真空科学与技术学报, 2016, 36(3):340-350. (Zhu Xiaofang, Hu Quan, Hu Yulu, et al. A review of the structure and design principle of high-power coaxial and waveguide windows[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(3): 340-350
    [5]
    Bohlen H P. Advanced high-power microwave vacuum electron device development[C]//Proceedings of the Particle Accelerator Conference. 1999: 445-449.
    [6]
    储开荣, 窦钺, 盛兴, 等. X波段高峰值功率TE01模式圆波导行波窗的研制[J]. 真空电子技术, 2017(6):31-35. (Chu Kairong, Dou Yue, Sheng Xing, et al. Development of X-band peak power TE01 mode circular waveguide traveling window[J]. Vacuum Electronics, 2017(6): 31-35
    [7]
    储开荣, 盛兴, 李冬凤, 等. X波段50 MW速调管的研制[J]. 强激光与粒子束, 2020, 32:103012. (Chu Kairong, Sheng Xing, Li Dongfeng, et al. Development of X-band 50 MW klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103012
    [8]
    Miura A, Matsumoto H. Development of an S-band RF window for linear colliders[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 334(2/3): 341-352.
    [9]
    Michizono S, Saito Y, Fukuda S, et al. RF windows used at S-band pulsed klystrons in the KEK linac[J]. Vacuum, 1996, 47(6/8): 625-628.
    [10]
    张雪, 徐强, 王勇, 等. 高功率盒形窗内次级电子倍增效应[J]. 强激光与粒子束, 2016, 28:023004. (Zhang Xue, Xu Qiang, Wang Yong, et al. Secondary electron multiplier effect in high power box window[J]. High Power Laser and Particle Beams, 2016, 28: 023004 doi: 10.11884/HPLPB201628.023004
    [11]
    Michizono S, Saito Y. Surface discharge and surface potential on alumina RF windows[J]. Vacuum, 2001, 60: 235-239. doi: 10.1016/S0042-207X(00)00380-8
    [12]
    Sakai T, Sato I, Hayakawa K, et al, S-band klystron for long pulse operation[C]//Proceedings of International Linear Accelerator Conference. 2002. 712-714.
    [13]
    Michizono S. Secondary electron emission from alumina RF windows[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(3): 583-592. doi: 10.1109/TDEI.2007.369517
    [14]
    Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high-power microwaves[J]. IEEE Trans Plasma Science, 1998, 26(3): 296-303. doi: 10.1109/27.700757
    [15]
    Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. Journal of Applied Physics, 1999, 86(3): 1724-1728. doi: 10.1063/1.370953
    [16]
    张雪, 王勇, 范俊杰, 等. TM11模对高功率盒形窗次级电子倍增效应影响的研究[J]. 真空电子技术, 2014(04):19-23. (Zhang Xue, Wang Yong, Fan Junjie, et al. Research on the influence of TM11 on secondary electron multiplication effect of high power box-shaped windows[J]. Vacuum Electronics, 2014(04): 19-23 doi: 10.3969/j.issn.1002-8935.2014.04.006
    [17]
    Zhu Xiaofang, Hao Yiliang, Hu Yulu, et al. Scattering matrix analysis of a high-power pill-box-type window without ghost mode[C]//International Vacuum Electronics Conference. 2017.
    [18]
    张志强, 罗积润, 张兆传. S波段大功率宽带速调管输出窗鬼模振荡的抑制[J]. 电子与信息学报, 2017, 39(3):731-736. (Zhang Zhiqiang, Luo Jirun, Zhang Zhaochuan. Suppression of ghost mode oscillation in output window of S-band high power broadband klystron[J]. Journal of Electronics and Information Technology, 2017, 39(3): 731-736
    [19]
    Cai Jinchi, Hu Linlin, Ma Guowu, et al. Theoretical and experimental study of the modified pill-box window for the 220-GHz folded waveguide BWO[J]. IEEE Trans Plasma Science, 2014, 42(10): 3349-3357. doi: 10.1109/TPS.2014.2349919
    [20]
    Hu Peng, Lei Wenqiang, Jiang Yi, et al. The vacuum window for 0.34-THz folded waveguide traveling wave tube[C]//International Vacuum Electronics Conference. 2019.
    [21]
    Yang Tongbin, Lu Dun, Fu Wenjie, et al. A broadband low-leoss W-band pill-box window[C]//International Vacuum Electronics Conference. 2019.
    [22]
    Otake Y, Tokumoto S, Kazakov S Y, et al. High-power tests of X-band RF windows at KEK[C]//Proceedings of the Third Workshop on Pulsed RF Sources for Linear Colliders. 1996, 30: 315-322.
    [23]
    Zhang Xue, Wang Yong, Fan Junjie, et al. Development of new pill-box window for S-band high power klystron[J]. Journal of Electronics, 2014, 31(1): 78-84.
    [24]
    Zhang Xue, Tang Haobei, Chen Xuyuan, et al. Multipactor discharge in circular waveguide window[J]. Physics of Plasmas, 2020, 27: 043504. doi: 10.1063/1.5142341
    [25]
    Otake Y, Tokumoto S, Mizuno H. Design and high-power test of a TE11-mode X-band RF window with taper transitions[C]//Proceedings of the Particle Accelerator Conference. 1995: 1590-1592.
    [26]
    柴媛媛, 刘庆想, 张健穹, 等. X波段新型圆波导输出窗的研究[J]. 微波学报, 2014(s1):525-527. (Chai Yuanyuan, Liu Qingxiang, Zhang Jianqiong, et al. Research on a new X-band circular waveguide output window[J]. Journal of Microwaves, 2014(s1): 525-527
    [27]
    Kazakov S Y. Increased power RF-window[C]//BINP Preprint. 1992.
    [28]
    Michizono S, Saito Y, Mizuno H, et al. High-power test of pill-box and TW-in-ceramic type S-band windows[C]//Proceedings of the 17th International Linac Conference. 1994: 21-26.
    [29]
    Buyanova M N, Nechaev V E, Semenov V E. Multipactor discharge on a dielectric surface in the field of circularly polarized plane wave[J]. Radio physics and Quantum Electron, 2007, 50(10/11): 893-907.
    [30]
    Fowkes W, Callin R S, Tantawi S G, et al. Reduced field TE01/X-band travelling wave window[C]//Proceedings of the Particle Accelerator Conference 1995: 1587-1589.
    [31]
    Fowkes W R, Jongewaard E N, Callin R S, et al. Design considerations for very high power RF windows at X-band[C]//Proceedings of the 19th International Linear Accelerator Conference: 1998: 243.
    [32]
    Fowkes W R, Callin R S, Jongewaard E N, et al. Large diameter reduced field TE01 traveling wave window for X-band[C]//Proceedings of the 1999 Particle Accelerator Conference. 1999.
    [33]
    Kazakov S. New compact TE10–TE01 mode converter and TE01-TE02 window[R]. ISG-8, 24-28, 2002.
    [34]
    Michizono S, Matsumoto T, Nakao K, et al. Development of C-band high-power mix-mode RF windows[C]//Proceedings of Linear Accelerator Conference. 2004.
    [35]
    Kazakov S Y. A New Traveling-wave mixed-mode RF window with a low electric field in ceramic-metal brazing area[J]. KEK Preprint, 1998-8: 98-120.
    [36]
    Tokumoto S, Chin Y H, Mizuno H, et al. High power testing results of the X-band mixed-mode RF windows for linear colliders[C]//Linear Accelerator Conference. 2000: 21-25.
    [37]
    Kazakov S, Higo T, Matsumoto S. TE11/TM11 mixed-mode wave guide valve at X-band[C]//Proceedings of IPAC. 2010.
    [38]
    Yamaguchi S, Matsumoto S, Tokumoto S, et al. High-power test results of Kazakov RF window[C]//Linear Accelerator Conferenc. 1999.
    [39]
    Joo Y, Lee B J, Kong H S, et al. Development of new S-band RF window for stable high-power operation in linear accelerator RF system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 1-8.
    [40]
    常超. 高功率微波系统中的击穿机理[J]. 北京: 科学出版社, 2015.

    Chang Chao. Breakdown mechanism in high power microwave system[J]. Beijing: Science Press, 2015
    [41]
    Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Trans Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657.
    [42]
    Michizono S. TiN film coatings on alumina radio frequency windows[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 1180-1184.
    [43]
    焦晓静, 苏党帅, 王茜. TiN镀层对射频器件表面二次电子倍增的抑制作用[J]. 微波学报, 2012(s1):282-287. (Jiao Xiaojing, Su Dangshuai, Wang Qian. Suppression of surface multipactor in RF devices by TiN coating[J]. Journal of Microwaves, 2012(s1): 282-287
    [44]
    Peng Zhen, Chen Gen, Zhao Yanping, et al. Investigation of TiN film on an RF ceramic window by atomic layer deposition[J]. Journal of Vacuum Science & Technology A, 2020, 38: 052401.
    [45]
    刘湘龙, 李晓云, 杨建, 等. 真空电绝缘性能的影响[J]. 人工晶体学报, 2014, 43(3):857-861. (Liu Xianglong, Li Xiaoyun, Yang Jian, et al. Effect of Chromium doping on vacuum electrical insulation performance of alumina ceramics[J]. Journal of Synthetic Crystals, 2014, 43(3): 857-861
    [46]
    Huo Yankun, Liu Wenyuan, Guo Yuewen, et al. Molecule self-assembly on alumina ceramic insulator to enhance its vacuum surface voltage withstand strength[J]. Journal of Applied Physics, 2020, 127: 243304. doi: 10.1063/5.0006233
    [47]
    Chang Chao, Liu Guozhi, Huang Haojie, et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface[J]. Physics of Plasmas, 2009, 16: 083501. doi: 10.1063/1.3200900
    [48]
    Cheng Guoxin, Cai Dan, Hong Zhiqiang, et al. Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric[J]. IEEE Trans Dielectrics and Electrical Insulation, 2013, 20(5): 1942-1950. doi: 10.1109/TDEI.2013.6633728
    [49]
    Cai Libing, Wang Jianguo, Cheng Guoxin, et al. Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface[J]. Journal of Applied Physics, 2015, 117: 053302. doi: 10.1063/1.4907683
    [50]
    Zhang Xue, Wang Yong, Fan Junjie, et al. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon[J]. Physics of Plasmas, 2014, 21: 092101. doi: 10.1063/1.4894222
    [51]
    Chang Chao, Liu Yansheng, Verboncoeur J, et al. The effect of periodic wavy profile on suppressing window multipactor under arbitrary electromagnetic mode[J]. Applied Physics Letters, 2015, 106: 014102. doi: 10.1063/1.4905280
    [52]
    Chang Chao, Verboncoeur J, Wei Fuli, et al. Nanosecond discharge at the interfaces of flat and periodic ripple surfaces of dielectric window with air at varied pressure[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(1): 375-381. doi: 10.1109/TDEI.2016.006047
    [53]
    田志英, 尚阿曼, 张巨先. 氧化铝陶瓷表面状态对其真空耐压性能的影响[J]. 真空科学与技术学报, 2015, 35(10):1169-1173. (Tian Zhiying, Shang Aman, Zhang Juxian. Effect of surface state of alumina ceramic on its vacuum compressive resistance[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(10): 1169-1173
    [54]
    Jordan N M, Lau Y Y, French D M, et al. Electric field and electron orbits near a triple point[J]. Journal of Applied Physics, 2007, 102: 033301. doi: 10.1063/1.2764211
    [55]
    Foster J, Thomas M, Neuber A A. Variation in the statistical and formative time lags of high power microwave surface flashover utilizing a superimposed dc electric field[J]. Journal of Applied Physics, 2009, 106: 063310. doi: 10.1063/1.3226866
    [56]
    Ivanov O A, Lobaev M A, Isaev V A, et al. Suppressing and initiation of multipactor discharge on a dielectric by an external dc bias[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 022004. doi: 10.1103/PhysRevSTAB.13.022004
    [57]
    Zhang Jianwei, Luo Wei, Wang Hongguang, et al. Suppression of high-power microwave window breakdown by the sweeping-out-electron effect with an external dc bias electric field[J]. Physics of Plasmas, 2019, 26: 123503. doi: 10.1063/1.5123411
    [58]
    Valfells A, Ang L K, Lau Y Y, et al. Effects of an external magnetic field, and of oblique radio-frequency electric fields on multipactor discharge on a dielectric[J]. Physics of Plasmas, 2000, 7(2): 750. doi: 10.1063/1.873861
    [59]
    Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Suppression of high-power microwave dielectric multipactor by resonant magnetic field[J]. Applied Physics Letters, 2010, 96: 111502. doi: 10.1063/1.3360853
    [60]
    Zhang Xue, Wang Yong, Fan Junjie. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon[J]. Physics of Plasmas, 2015, 22: 022110. doi: 10.1063/1.4907248
    [61]
    Semenov V, Kryazhev A, Anderson D, et al. Multipactor suppression in amplitude modulated radio frequency fields[J]. Physics of Plasmas, 2001, 8(11): 5034-5039. doi: 10.1063/1.1410980
    [62]
    Anza S, Mattes M, Vicente C, et al. Multipactor theory for multicarrier signals[J]. Physics of Plasmas, 2011, 18: 032105. doi: 10.1063/1.3561821
    [63]
    Rice S A, Verboncoeur J P. Migration of multipactor trajectories via higher-order mode perturbation[J]. IEEE Trans Plasma Science, 2017, 45: 1739-1745. doi: 10.1109/TPS.2017.2704522
    [64]
    Iqbal A, Verboncoeur J, Zhang P. Multipactor susceptibility on a dielectric with two carrier frequencies[J]. Physics of Plasmas, 2018, 25: 043501. doi: 10.1063/1.5024365
    [65]
    Iqbal A, Wong P Y, Verboncoeur J P, et al. Frequency-domain analysis of single-surface multipactor discharge with single- and dual-tone RF electric fields[J]. IEEE Trans Plasma Science, 2020, 48(6): 1950-1958. doi: 10.1109/TPS.2020.2978785
    [66]
    Wen D Q, Iqbal A, Zhang P, et al. Suppression of single-surface multipactor discharges due to non-sinusoidal transverse electric field[J]. Physics of Plasmas, 2019, 26: 093503. doi: 10.1063/1.5111734
  • Relative Articles

    [1]Mao Pengxin, Tang Yongliang, Wang Xiufang, Liu Qingxiang. Design and research of C-band miniaturized high power microwave output window[J]. High Power Laser and Particle Beams, 2024, 36(3): 033008. doi: 10.11884/HPLPB202436.230359
    [2]Zhang Xue, Wang Tao, Ni Xinrong, Cai Chenglin. Effects of low energy secondary electrons on breakdown of dielectric window[J]. High Power Laser and Particle Beams, 2020, 32(10): 103008. doi: 10.11884/HPLPB202032.200170
    [3]Zhang Xue, Xu Qiang, Wang Yong, Chu Jun, Wang Mengjiao, Duan Bin. Multipactor phenomenon of high-power pill-box window[J]. High Power Laser and Particle Beams, 2016, 28(02): 023004. doi: 10.11884/HPLPB201628.023004
    [4]Zhou Quanfeng, Song Rui, Lei Wenqiang, Jiang Yi, Hu Peng, Yan Lei, Ma Guowu, Chen Hongbin. Design and test of wideband 0.22 THz folded-waveguide travelling wave tube[J]. High Power Laser and Particle Beams, 2015, 27(11): 113102. doi: 10.11884/HPLPB201527.113102
    [5]Fan Zhuangzhuang, Wang Hongguang, Lin Shu, Li Yongdong, Liu Chunliang. Two dimensional particle-in-cell simulation of electron multipactor on high power microwave dielectric window surface[J]. High Power Laser and Particle Beams, 2014, 26(06): 063012. doi: 10.11884/HPLPB201426.063012
    [6]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Tang Chuanxiang. Design of compact power combiner in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063013. doi: 10.11884/HPLPB201426.063013
    [7]Song Baipeng, Fan Zhuangzhuang, Su Guoqiang, Mu Haibao, Zhang Guanjun, Liu Chunliang. Rectangular grooves suppressing multipactor across high power microwave dielectric window[J]. High Power Laser and Particle Beams, 2014, 26(06): 065008. doi: 10.11884/HPLPB201426.065008
    [8]Zhang Huibo, Yang Jianhua, Cheng Guoxin, Li Guolin, Shu Ting. Investigation on multipactor of high-power microwave window with grooves[J]. High Power Laser and Particle Beams, 2013, 25(05): 1189-1194. doi: 10.3788/HPLPB20132505.1189
    [9]Zhang Rui, Wang Yong. Design of C-band 50 MW klystron with traveling wave output structure[J]. High Power Laser and Particle Beams, 2012, 24(12): 2858-2864. doi: 10.3788/HPLPB20122412.2858
    [10]Hao Xiwei, Song Baipeng, ZHang Guanjun, Qiu SHi, Huang WenHua, Qin Feng, Jin Xiao. Research progress of dielectric window surface breakdown phenomena under HPM in vacuum[J]. High Power Laser and Particle Beams, 2012, 24(01): 16-23.
    [11]hao xiwei, zhang guanjun, huang wenhua, qiu shi, chen changhua, fang jinyong. 2-D simulation of electron movement on dielectric window surface under high power microwave[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [12]cai zhengping, xu xuzhe, wu zhiyong. 450 kV high power klystron modulator system[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [13]zhang zhiqiang, qiu shi, fang jinyong, zhang qingyuan, hou qing, chang chao, jiao yongchang. Experiment device for X-band HPM feed output window dielectric breakdown[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [14]hao xiwei, qiu shi, hou qing, huang wenhua, zhang guanjun. Damage phenomena of dielectric window material under X-band high power microwave[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [15]wang hai-yang, li jia-yin, li ming-guang, yu xiu-yun. High power full band waveguide pill-box window[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [16]liu zhi-gang, zhang zhao-chuan, ding yao-gen, li xian-xia. Simulation and design of three-mode overlapped two-gap coupled cavity type output circuit[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [17]sun peng, ding yao-gen, zhao ding. Design of waveguide twist for klystron power combining output structure[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [18]zhou zu-sheng, tian shuang-min, dong dong. Design of focusing magnet for high power klystron[J]. High Power Laser and Particle Beams, 2006, 18(08): 0- .
    [19]zhong zhe-fu, li hao. Dielectric physic-optics method for analysis of high power microwave output window[J]. High Power Laser and Particle Beams, 2006, 18(08): 0- .
    [20]zhong zhe-fu, li hao. Fabrication of high power microwave feed output window[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
  • Cited by

    Periodical cited type(3)

    1. 王智祥,陈莹,逄清阳,李鑫,王根水. 碳酸锰掺杂氧化镁基陶瓷的烧结行为和介电性能(英文). 无机材料学报. 2025(01): 97-103 .
    2. 卯鹏新,唐永亮,王秀芳,刘庆想. C波段小型化高功率微波输出窗的设计. 强激光与粒子束. 2024(03): 50-56 . 本站查看
    3. 陈登红,袁永强,汤允迎. 微波技术辐射岩石实验探讨与成孔应用研究进展. 科学技术与工程. 2022(22): 9447-9455 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.3 %FULLTEXT: 15.3 %META: 77.6 %META: 77.6 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.1 %其他: 6.1 %其他: 2.0 %其他: 2.0 %Absecon: 0.1 %Absecon: 0.1 %Brazil: 0.1 %Brazil: 0.1 %China: 1.0 %China: 1.0 %Germany: 0.1 %Germany: 0.1 %Hashima: 0.0 %Hashima: 0.0 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Italy: 0.1 %Italy: 0.1 %Japan: 0.8 %Japan: 0.8 %Kaminokawa: 0.0 %Kaminokawa: 0.0 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Madison: 0.1 %Madison: 0.1 %Malvern: 0.1 %Malvern: 0.1 %Rochester: 0.1 %Rochester: 0.1 %San Mateo: 0.0 %San Mateo: 0.0 %Seongnam-si: 0.1 %Seongnam-si: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Turkey: 0.1 %Turkey: 0.1 %United Kingdom: 0.6 %United Kingdom: 0.6 %United States: 1.0 %United States: 1.0 %[]: 0.7 %[]: 0.7 %三明: 0.0 %三明: 0.0 %上海: 3.4 %上海: 3.4 %上饶: 0.0 %上饶: 0.0 %东京都: 0.0 %东京都: 0.0 %东莞: 0.4 %东莞: 0.4 %中卫: 0.0 %中卫: 0.0 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.2 %丽水: 0.2 %乌兰察布: 0.1 %乌兰察布: 0.1 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %保定: 0.3 %保定: 0.3 %元朗新墟: 0.1 %元朗新墟: 0.1 %兰州: 0.4 %兰州: 0.4 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 11.7 %北京: 11.7 %华盛顿: 0.2 %华盛顿: 0.2 %南京: 1.5 %南京: 1.5 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %厦门: 0.3 %厦门: 0.3 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.0 %喀什: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %塔林: 0.0 %塔林: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.2 %太原: 0.2 %奥克兰: 0.0 %奥克兰: 0.0 %宁波: 0.1 %宁波: 0.1 %安庆: 0.0 %安庆: 0.0 %安康: 0.0 %安康: 0.0 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴登-符腾堡州: 0.1 %巴登-符腾堡州: 0.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %开封: 0.0 %开封: 0.0 %张家口: 0.4 %张家口: 0.4 %彼尔姆: 0.0 %彼尔姆: 0.0 %德州: 0.0 %德州: 0.0 %德黑兰: 0.3 %德黑兰: 0.3 %惠州: 0.1 %惠州: 0.1 %成都: 2.1 %成都: 2.1 %扬州: 0.1 %扬州: 0.1 %斯维尔德洛夫斯克州: 0.0 %斯维尔德洛夫斯克州: 0.0 %新加坡: 0.0 %新加坡: 0.0 %新竹: 0.0 %新竹: 0.0 %无锡: 0.0 %无锡: 0.0 %日本东京: 0.2 %日本东京: 0.2 %昆明: 0.3 %昆明: 0.3 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.6 %杭州: 0.6 %柳州: 0.0 %柳州: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %梅州: 0.1 %梅州: 0.1 %梧州: 0.1 %梧州: 0.1 %武汉: 0.3 %武汉: 0.3 %沧州: 0.1 %沧州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淄博: 0.0 %淄博: 0.0 %深圳: 0.2 %深圳: 0.2 %渥太华: 0.3 %渥太华: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.7 %湘潭: 0.7 %滁州: 0.0 %滁州: 0.0 %漯河: 0.6 %漯河: 0.6 %烟台: 0.1 %烟台: 0.1 %爱知: 0.1 %爱知: 0.1 %石家庄: 0.3 %石家庄: 0.3 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 20.7 %芒廷维尤: 20.7 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %葫芦岛: 0.3 %葫芦岛: 0.3 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 28.5 %西宁: 28.5 %西安: 0.8 %西安: 0.8 %贵阳: 0.2 %贵阳: 0.2 %资阳: 0.1 %资阳: 0.1 %达尔斯: 0.0 %达尔斯: 0.0 %达州: 0.2 %达州: 0.2 %运城: 1.1 %运城: 1.1 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.8 %郑州: 0.8 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.2 %重庆: 0.2 %锦州: 0.0 %锦州: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.6 %长沙: 0.6 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.2 %青岛: 0.2 %香港: 0.1 %香港: 0.1 %其他其他AbseconBrazilChinaGermanyHashimaIndiaIran (ISLAMIC Republic Of)ItalyJapanKaminokawaKorea Republic ofMadisonMalvernRochesterSan MateoSeongnam-siTaiwan, ChinaTurkeyUnited KingdomUnited States[]三明上海上饶东京都东莞中卫中山临汾丹东丽水乌兰察布伊斯坦布尔保定元朗新墟兰州兰辛内江加利福尼亚州北京华盛顿南京南宁南昌厦门台北台州台湾省合肥哈尔滨哥伦布喀什嘉兴塔林天津太原奥克兰宁波安庆安康宜春宣城密蘇里城巴登-符腾堡州常州平顶山广州库比蒂诺开封张家口彼尔姆德州德黑兰惠州成都扬州斯维尔德洛夫斯克州新加坡新竹无锡日本东京昆明晋中晋城普洱杭州柳州格兰特县梅州梧州武汉沧州洛阳济南淄博深圳渥太华温州渭南湖州湘潭滁州漯河烟台爱知石家庄绍兴绵阳芒廷维尤芜湖芝加哥苏州葫芦岛衡水衡阳衢州西宁西安贵阳资阳达尔斯达州运城连云港邯郸郑州鄂州重庆锦州长春长沙长治阳泉青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(2)

    Article views (2151) PDF downloads(198) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return