Citation: | Zhou Xiaokai, Tong Lili. Numerical simulation and experimental verification on the diffusion behavior of tritium in zirconium alloy cladding materials[J]. High Power Laser and Particle Beams, 2021, 33: 036001. doi: 10.11884/HPLPB202133.200275 |
[1] |
陈海英, 张春明, 王韶伟. 压水堆3H源项计算分析[J]. 原子能科学技术, 2016, 50(2):459-463. (Chen Haiying, Zhang Chunming, Wang Shaowei. Calculation analysis of tritium source term in PWR[J]. Atomic Energy Science and Technology, 2016, 50(2): 459-463
|
[2] |
GB 6249-2011. 核动力厂环境辐射防护规定[S].
GB 6249-2011. Regulations for environmental radiation protection of nuclear power plant[S]
|
[3] |
Kearns J J. Diffusion coefficient of hydrogen in alpha zirconium, zircaloy-2, zircaloy-4[J]. Journal of Nuclear Materials, 1972, 43: 330-338. doi: 10.1016/0022-3115(72)90065-7
|
[4] |
Kunz W, Greger G U, Munzel H. Diffusion of tritium in zircaloy-2[J]. Journal of Nuclear Materials, 1980, 88: 15-22. doi: 10.1016/0022-3115(80)90381-5
|
[5] |
Khatamian D. Diffusion of hydrogen in single crystals of monoclinic-ZrO2 and yttrium stabilized cubic zirconia[J]. Defect and Diffusion Forum, 2010, 297/301: 631-640. doi: 10.4028/www.scientific.net/DDF.297-301.631
|
[6] |
Smith T. Kinetics and mechanism of hydrogen permeation of oxide films on zirconium[J]. Journal of Nuclear Materials, 1966, 18(3): 323-336. doi: 10.1016/0022-3115(66)90173-5
|
[7] |
Hanson D L, Richards M B, Connors G P.TRIGO code description and user’s guide[R], GA-20128-911081, 2006.
|
[8] |
Eung S K, Chang H O, Patterson M. Study on the tritium behaviors in the VHTR system. Part 1: Development of tritium analysis code for VHTR and verification[J]. Nuclear Engineering and Design, 2010, 240: 1758-1767. doi: 10.1016/j.nucengdes.2010.02.023
|
[9] |
Longhurst G R. TMAP7 User Manual[R]. INL/EXT-04-02352, 2004.
|
[10] |
Ohashi H, Sherman S. Tritium movement and accumulation in the NGNP system interface and hydrogen production[R]. INL/EXT-07-12746, 2007.
|
[11] |
Yook D, Lee K J, Lee Y, et al. Estimation of the tritium behavior in the pebble type gas cooled reactor for hydrogen production[J]. Nuclear Science and Techniques, 2006, 43: 1522-1529. doi: 10.1080/18811248.2006.9711249
|
[12] |
Aly A, Avramova M, Ivanov K, et al. Three dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment[R]. DOE-NEUP-13-5180, 2017.
|
[13] |
Yamanaka S, Miyake M, Katsura M. Hydrogen solubility in zirconium alloys[J]. Journal of Nuclear Materials, 1995, 247(1/2): 315-321.
|
[14] |
Park M Y, Kim B Y, Kim E S. Development of semi-empirical model for tritium permeation under non-uniform temperature distribution at heat exchanger tube wall[J]. Annals of Nuclear Energy, 2015, 75: 413-420. doi: 10.1016/j.anucene.2014.08.044
|
[15] |
黎辉, 梅其良, 付亚茹. 核电厂氚的产生和排放分析[J]. 原子能科学技术, 2015, 49(4):739-743. (Li Hui, Mei Qiliang, Fu Yaru. Analysis of generation and release of tritium in nuclear power plant[J]. Atomic Energy Science and Technology, 2015, 49(4): 739-743 doi: 10.7538/yzk.2015.49.04.0739
|
[16] |
Sawatzky A. The diffusion and solubility of hydrogen in the alpha-phase of zircaloy-2[J]. Journal of Nuclear Materials, 1960, 2(1): 62-68. doi: 10.1016/0022-3115(60)90025-8
|
[17] |
Takagi I, Une K, Miyamura S, et al. Deuterium diffusion in steam-corroded oxide layer of zirconium alloys[J]. Journal of Nuclear Material, 2011, 419: 339-346. doi: 10.1016/j.jnucmat.2011.06.001
|
[18] |
Robinson S M, Chattin M R, Giaquinto J M, et al. Evaluation of tritium content and release from pressurized water reactor fuel cladding[R]. ORNL/SPR-2015/425, 2015.
|
[19] |
Barberis P, Frichet A. Characterization of zircaloy-4 oxide layers by impedance spectroscopy[J]. Journal of Nuclear Materials, 1999, 273: 182-191. doi: 10.1016/S0022-3115(99)00025-2
|
[20] |
Kammenzind B F, Franklin D G, Peters H R, et al. Hydrogen pickup and redistribution in alpha-annealed zircaloy-4[C]//11th International Symp on Zr in the Nuclear Industry. 1996: 338-370.
|
[1] | Wang Qi. Analysis of influence of canceling secondary neutron sources ontritium source terms in pressurized water reactors[J]. High Power Laser and Particle Beams, 2023, 35(11): 116004. doi: 10.11884/HPLPB202335.230096 |
[2] | Fu Pengtao, Dai Mingliang, Zhu Zhaowen, Liu Xinhua, Fang Lan, Xu Chunyan. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34(2): 026009. doi: 10.11884/HPLPB202234.210399 |
[3] | Duan Shuchao, Li Jing, Dan Jiakun, Xie Weiping, Zhou Shaotong, Zhang Siqun, Cai Hongchun, Ren Xiaodong, Xu Qiang, Wang Kunlun, Wang Ganghua. X-pinch 3D simulations with FOI-PERFECT[J]. High Power Laser and Particle Beams, 2015, 27(01): 010102. doi: 10.11884/HPLPB201527.010102 |
[4] | Yang Guang, Ding Linlin, Qin Lanyun, Bian Hongyou, Wang Wei. Measurement and numerical simulation of temperature field of laser deposition of TA15 titanium alloy[J]. High Power Laser and Particle Beams, 2014, 26(11): 119002. doi: 10.11884/HPLPB201426.119002 |
[5] | Li Yong, Gong Ding, Xuan Chun, Xia Hongfu, Xie Haiyan, Wang Jianguo. Error analysis of drift-diffusion model of semiconductor device numerical simulation[J]. High Power Laser and Particle Beams, 2014, 26(06): 063204. doi: 10.11884/HPLPB201426.063204 |
[6] | Fu Lan, Zhang Jianhua, Yang Gaozhao, Guo Hongsheng. Numerical simulation of statistical fluctuations in measurements of neutron multiplication coefficients on a critical power assembly[J]. High Power Laser and Particle Beams, 2013, 25(08): 2117-2120. doi: 10.3788/HPLPB20132508.2117 |
[7] | liu yinghui, niu xinjian, wang li, li hongfu. Numerical simulation of 94 GHz complex cavity gyrotron[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[8] | gu xiaowei, meng lin, li jiayin, sun yiqin, yu xinhua. Three-dimensional numerical simulation of microhollow cathode discharge model[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- . |
[9] | shi chunyan, yuan jiahu, wu fan, wan yongjian, hou xi. Numerical simulation of turbulent flow field in fluid jet polishing[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- . |
[10] | zhang ligang, ning hui, shao hao, chen changhua, song zhimin. Numerical simulation for characteristics of open-ended rectangular waveguide[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- . |
[11] | peng tang-chao, shu xiao-jian, dou yu-huan. Numerical simulations of chirped pulse amplification at FEL[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- . |
[12] | zhang song-bao, tang bin. Simulation and experiment of neutron radiography[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- . |
[13] | ge ming-li, liu qing-xiang, li xiang-qiang, zhao yun-fu. Numerical simulation and experimental research of coaxial-inserting-fin phase shifter[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- . |
[14] | qian xian-mei, zhu wen-yue, rao rui-zhong. Simulation of effects of beam wander on scintillation index of a focused Gaussian-beam[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[15] | zhang fa-qiang, yang jian-lun, li zheng-hong, chen fa-xin, ying chun-tong, liu guang-jun. Numerical simulation of high energy neutron radiography[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- . |
[16] | sun jun, liu guo-zhi, lin yu-zheng, xiao ren-zhen. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- . |
[17] | tu bo, jiang jian-feng, zhou tang-jian, cui ling-ling, yao zhen-yu. Numerical simulation of medium temperature and stress for high power disk laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- . |
[18] | he feng, su jian-cang, li yong-dong, liu chun-liang, sun jian. Numerical simulation of semiconductor opening switch[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- . |
[19] | zu xiao tao, zhang chuan fei, xiang xia, wu ji hong, zhao wen jin, wang lu min. Ionirradiationinduced amorphization of Zr(Cr,Fe)2 precipitate[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- . |
[20] | zhu peng-fei, qian lie-jia, lin zun-qi. Numerical studies of characteristic of optical parametric chirped pulse amplification[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- . |
1. | 周子凌,吴梦洁,谢锋,周湘艳. 核反应堆材料中氚渗透机制的研究现状. 国际放射医学核医学杂志. 2024(12): 765-773 . ![]() | |
2. | 陈威虎,杨子辉,夏源,霍前超,王海霞,汪建业. 基于数据驱动的氚粒子扩散三维仿真系统. 计算机系统应用. 2022(01): 118-123 . ![]() |