Volume 33 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Fu Yufan, Zhou Dongfang, Zhang Yi, et al. Design of compact wideband Rotman lens for 5G multibeam application[J]. High Power Laser and Particle Beams, 2021, 33: 033006. doi: 10.11884/HPLPB202133.200291
Citation: Fu Yufan, Zhou Dongfang, Zhang Yi, et al. Design of compact wideband Rotman lens for 5G multibeam application[J]. High Power Laser and Particle Beams, 2021, 33: 033006. doi: 10.11884/HPLPB202133.200291

Design of compact wideband Rotman lens for 5G multibeam application

doi: 10.11884/HPLPB202133.200291
  • Received Date: 2020-10-22
  • Rev Recd Date: 2021-01-23
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • In this paper, a compact broadband Rotman lens beamforming network based on equal optical path difference is proposed. The beamforming network is intended for applications in a multi-beam antenna array of 5G millimeter-wave (mm-wave) communication. Firstly, the theoretical design of the Rotman lens is introduced in detail. A power divider is used to replace the standard single-port feeding mode to generate a high-directional beam, reducing the scattering of the lens’ internal energy and the energy loss at adjacent ports. The Chebyshev multi-stub matching converter is used to optimize the original tapered array output port. To ensure a wide frequency band, the original matching port size is reduced, and the overall size of the lens is reduced by 20%. Measurement results of the improved model, show that the working frequency band of the lens is 16.5−33.8 GHz, of which S11 is better than 15 dB at 17.2−32.0 GHz, and the scanning angle is ±30°. The lens has a simple and compact structure, can effectively provide a stable phase difference signal for adjacent array elements, and achieve the goal of 5G millimeter-wave array multi-beam.
  • loading
  • [1]
    Inoue T. 5G standards progress and challenges[C]//Proceedings of the 2017 IEEE Radio and Wireless Symposium (RWS). Phoenix, AZ, USA: IEEE, 2017: 1-4.
    [2]
    Hong Wonbin, Baek K H, Lee Y, et al. Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices[J]. IEEE Communications Magazine, 2014, 52(9): 63-69. doi: 10.1109/MCOM.2014.6894454
    [3]
    Samadi Taheri M M, Abdipour A, Zhang Shuai, et al. Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4042-4046. doi: 10.1109/TVT.2019.2899178
    [4]
    Hong Wonbin. Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift[J]. IEEE Microwave Magazine, 2017, 18(7): 86-102. doi: 10.1109/MMM.2017.2740538
    [5]
    Hussain R, Alreshaid A T, Podilchak S K, et al. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets[J]. IET Microwaves, Antennas & Propagation, 2017, 11(2): 271-279.
    [6]
    Hong Wei, Jiang Zhihao, Yu Chao, et al. Multibeam antenna technologies for 5G wireless communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6231-6249. doi: 10.1109/TAP.2017.2712819
    [7]
    Pourahmadazar J, Karimian R, Denidni T. 8-12-GHz beam-shaping/steering phased antenna array system using SIW fed nonplanar director Yagi-Uda antenna[C]//Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). Fajardo, Puerto Rico: IEEE, 2016: 1145-1146.
    [8]
    Cho Y J, Suk G Y, Kim B, et al. RF lens-embedded antenna array for mmWave MIMO: design and performance[J]. IEEE Communications Magazine, 2018, 56(7): 42-48. doi: 10.1109/MCOM.2018.1701019
    [9]
    Dai T K V, Nguyen T, Kilic O. A compact microstrip Rotman lens design[C]//Proceedings of the 2017 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). Boulder, CO, USA: IEEE, 2017: 1-2.
    [10]
    Hansen R C. Design trades for Rotman lenses[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(4): 464-472. doi: 10.1109/8.81458
    [11]
    Ershadi S E, Keshtkar A, Bayat A, et al. Rotman lens design and optimization for 5G applications[J]. International Journal of Microwave and Wireless Technologies, 2018, 10(9): 1048-1057. doi: 10.1017/S1759078718000934
    [12]
    康行健. 天线原理与设计[M]. 北京: 北京理工大学出版社, 1993: 327-328.

    Kang Xingjian. The theory and design of antenna[M]. Beijing: Beijing Institute of Technology Press, 1993: 327-328
    [13]
    Tolin E, Litschke O, Vipiana F. Phase management for extended scan range antenna arrays based on Rotman lens[C]//Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018). London, UK: IET, 2018: 5-8.
    [14]
    Musa L, Smith M S. Microstrip port design and sidewall absorption for printed Rotman lenses[J]. IEE Proceedings, Part H—Microwaves, Antennas and Propagation, 1989, 136(1): 53-58.
    [15]
    Satitchantrakul T, Chudpooti N, Akkaraekthalin P, et al. An implementation of compact quarter-wave-like-transformers using multi-section transmission lines[J]. Radioengineering, 2018, 27(1): 101-109. doi: 10.13164/re.2018.0101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (2186) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return