Huang Yuchen, Qian Yikun, Feng Peng, et al. Simulation of radiation field from isotopic gamma source collimation[J]. High Power Laser and Particle Beams, 2021, 33: 036002. doi: 10.11884/HPLPB202133.200294
Citation: Huang Yuchen, Qian Yikun, Feng Peng, et al. Simulation of radiation field from isotopic gamma source collimation[J]. High Power Laser and Particle Beams, 2021, 33: 036002. doi: 10.11884/HPLPB202133.200294

Simulation of radiation field from isotopic gamma source collimation

doi: 10.11884/HPLPB202133.200294
  • Received Date: 2020-10-27
  • Rev Recd Date: 2021-01-22
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • Aiming at the key technical issues of the reference radiation field size of isotropic sources, GB/T 12162 series of GB standards stipulates the size of the reference radiation field when using an isotropic source. However, there is no specific regulation for the size of the irradiation under collimation. To reduce the influence of scattering in the gamma reference radiation field when used for radiation detection or monitoring instrument verification and value calibration, Monte Carlo simulation was carried out to explore the effect of the size change of the irradiation chamber on the energy distribution and dose rate value during the radiation source collimation. The boundary conditions of the collimated gamma radiation irradiation chamber were obtained, and the details of the gamma reference radiation field boundary research method and related standards are established and improved. The study provides a new method or approach for the size design of the irradiation chamber under the collimated irradiation state.
  • [1]
    徐阳. 移动式小尺度参考辐射的Monte Carlo模拟及应用研究[D]. 重庆: 重庆大学, 2016: 13-21.

    Xu Yang, Simulation study on a minitype reference radiation with Monte Carlo method and its application[D].Chongqing: Chongqing University, 2016: 13-21
    [2]
    G/BT 12162.1-2000, 用于校准剂量仪和剂量率仪及确定其能量相应的X和γ参考辐射第1部分: 辐射特性及产生方法[S].

    G/BT 12162.1-2000, X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy—Part 1 : Radiation characteristics and production methods[S]
    [3]
    ISO 4037-1: 1996, X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy—Part 1: Radiation characteristics and production methods[S].
    [4]
    徐阳, 魏彪, 刘易鑫, 等. 同位素铯源小尺度参考辐射蒙特卡罗模拟研究[J]. 原子能科学技术, 2017, 51(3):522-528. (Xu Yang, Wei Biao, Liu Yixin, et al. Monte Carlo simulation research of 137Cs minitype reference radiation[J]. Atomic Energy Science and Technology, 2017, 51(3): 522-528 doi: 10.7538/yzk.2017.51.03.0522
    [5]
    高飞, 肖雪夫, 倪宁, 等. 全景γ参考辐射场中散射辐射的蒙特卡罗模拟[J]. 同位素, 2013, 26(2):110-114. (Gao Fei, Xiao Xuefu, Ni Ning, et al. Monte Carlo simulation of scattered radiation of free-Field geometries gama reference radiation field[J]. Journal of Isotopes, 2013, 26(2): 110-114 doi: 10.7538/tws.2013.26.02.0110
    [6]
    徐阳, 魏彪, 毛本将, 等. 基于蒙特卡罗的小尺度参考辐射装置屏蔽研究[J]. 强激光与粒子束, 2016, 28:096004. (Xu Yang, Wei Biao, Mao Benjiang, et al. Shielding research of minitype reference radiation device based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2016, 28: 096004 doi: 10.11884/HPLPB201628.160018
    [7]
    Smith B, Matthews K, Hill W, et al. An electronically—collimated gamma-ray detector for intraoperative localization of radiation sources[J]. Medical Physics, 2006, 33(6): 2277-2277.
    [8]
    何庆驹, 李飞, 温自强. 蒙特卡罗软件对伽玛射线屏蔽性的研究[J]. 无线互联科技, 2018(17):12-14. (He Qingju, Li Fei, Wen Ziqiang. Research on gamma ray shielding effectiveness by Monte Carlo software[J]. Wireless Internet Technology, 2018(17): 12-14 doi: 10.3969/j.issn.1672-6944.2018.17.006
    [9]
    王贵林, 柳敏华, 王成国, 等. γ射线照射量标准装置的建立[J]. 中华放射医学与防护杂志, 1998(3):57-59. (Wang Guilin, Liu Minhua, Wang Chengguo, et al. Establishment of γ-ray exposure standard device[J]. Chinese Journal of Radiological Medicine and Protection, 1998(3): 57-59
    [10]
    Smith B, Matthews K L, Lackie A, et al. An electronically-collimated gamma-ray detector for localization of radiation sources[C]//IEEE Nuclear Science Symposium Conference Record. 2006: 257-263.
    [11]
    王光德. 放射性钴源生产应用现状及进展[C]//中国核学会学术年会. 2017.

    Wang Guangde. Production and application progress of the radioactive cobalt source[C]//Progress Report on China Nuclear Science & Technology. 2017
    [12]
    高飞, 肖雪夫, 倪宁. 固定式环境γ辐射剂量率仪现场校准技术[J]. 原子能科学技术, 2015(2):212-217. (Gao Fei, Xiao Xuefu, Ni Ning. On-site calibration technology for fixed environmental gamma radiation rate meter[J]. Atomic Energy Science and Technology, 2015(2): 212-217 doi: 10.7538/yzk.2015.49.02.0212
    [13]
    刘晖, 邵文成. 137Cs辐射场中空气比释动能率的探讨[J]. 牡丹江教育学院学报, 2008(4):121-122. (Liu Hui, Shao Wencheng. Discussion on the specific kinetic energy of air in Cs-137 radiation field[J]. Journal of Mudanjiang College of Education, 2008(4): 121-122 doi: 10.3969/j.issn.1009-2323.2008.04.062
    [14]
    Nikolaou M E, Spyrou G, Panayiotakis G, et al. Design studies of collimated gamma ray sources[C]//2000 IEEE Nuclear Science Symposium Conference. 2000: 20-100.
    [15]
    高飞, 肖雪夫, 侯金兵, 等. 60Co 单源照射装置的蒙特卡罗方法优化设计[J]. 原子能科学技术, 2014, 48(3):523-527. (Gao Fei, Xiao Xuefu, Hou Jinbing, et al. Optimal design of 60Co single source radiation facility with Monte Carlo method[J]. Atomic Energy Science and Technology, 2014, 48(3): 523-527 doi: 10.7538/yzk.2014.48.03.0523
    [16]
    Kumar A, Dong M G, Sayyed M I, et al. Gamma-ray shielding effectiveness of lead bismuth germanoborate glasses[J]. Glass Physics & Chemistry, 2018, 44(4): 292-299.
    [17]
    Leake J W. The effect of ICRP (74) on the response of neutron monitors[J]. Nuclear Instruments & Methods in Physics Research A, 1999, 421(1/2): 365-367.
  • Relative Articles

    [1]Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478
    [2]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [3]Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143
    [4]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [5]Shi Tao, Ma Jimin, Qiu Youheng, Huang Hongwen, Li Zhenghong, Qian Dazhi. Global variance reduction based on forward Monte Carlo calculation[J]. High Power Laser and Particle Beams, 2018, 30(1): 016006. doi: 10.11884/HPLPB201830.170163
    [6]Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481
    [7]Lü Wenhui, Guo Huiping, Lü Ning, Hou Yijie, Wang Xiaotian, Zhao Kuo, Tian Chenyang. Design of alignment and shielding structure for small D-D neutron tube with 2.45 MeV neutron source[J]. High Power Laser and Particle Beams, 2017, 29(12): 126008. doi: 10.11884/HPLPB201729.170225
    [8]Dong Xiaoxia, Liu Qiang, Zhao Xiang, Yan Liping, Zhou Haijing, Huang Kama. Boundary condition in analysis of high-frequency electromagnetic field coupling to non-uniform multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2017, 29(09): 093201. doi: 10.11884/HPLPB201729.170058
    [9]Yexin Ouwen, Liu Shichang, Wang Kan. Research on RMC neutronics-thermal hydraulics coupling based on universal coupling methodology[J]. High Power Laser and Particle Beams, 2017, 29(01): 016003. doi: 10.11884/HPLPB201729.160190
    [10]Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029
    [11]Xu Yang, Wei Biao, Mao Benjiang, Liu Yixin, Feng Peng. Shielding research of minitype reference radiation device based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2016, 28(09): 096004. doi: 10.11884/HPLPB201628.160018
    [12]Sun Jialong, Yu Ganglin, She Ding, Wang Kan. Development of repeat geometry function in reactor Monte Carlo code RMC[J]. High Power Laser and Particle Beams, 2013, 25(01): 219-222. doi: 10.3788/HPLPB20132501.0219
    [13]Yu Hui, Zin Cho. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels[J]. High Power Laser and Particle Beams, 2013, 25(01): 143-146. doi: 10.3788/HPLPB20132501.0143
    [14]Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189
    [15]Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211
    [16]Xiao Bo, Huang Jiaofeng, Zhang Xuan, Jing Yuefeng. "Measurement” of parameters in discrete program using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2013, 25(01): 138-142. doi: 10.3788/HPLPB20132501.0138
    [17]Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2975-2978. doi: 10.3788/HPLPB20122412.2975
    [18]Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965
    [19]luan xiting, deng yongfeng, tan chang, han xianwei, mao genwang. Properties of electron-beam produced air plasma in nonuniform magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [20]pan ruzheng, wang jue, yan ping, sun guangsheng, zhang dongdong, zhou yuan, li mintang. Monte Carlo simulation of laser-triggered flashover in air condition[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.0 %FULLTEXT: 17.0 %META: 80.0 %META: 80.0 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 0.4 %其他: 0.4 %Absecon: 0.5 %Absecon: 0.5 %China: 1.4 %China: 1.4 %India: 0.1 %India: 0.1 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.4 %United States: 0.4 %[]: 0.3 %[]: 0.3 %三明: 0.1 %三明: 0.1 %上海: 1.8 %上海: 1.8 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.1 %信阳: 0.1 %北京: 7.4 %北京: 7.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.6 %南京: 0.6 %南昌: 0.1 %南昌: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.4 %合肥: 0.4 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %宣城: 0.4 %宣城: 0.4 %帕特雷: 0.1 %帕特雷: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.2 %广州: 0.2 %弗吉尼亚州: 0.4 %弗吉尼亚州: 0.4 %张家口: 0.3 %张家口: 0.3 %张家界: 0.2 %张家界: 0.2 %徐州: 0.1 %徐州: 0.1 %德国: 0.1 %德国: 0.1 %成都: 0.9 %成都: 0.9 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.4 %杭州: 0.4 %松原: 0.1 %松原: 0.1 %武汉: 0.3 %武汉: 0.3 %池州: 0.1 %池州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %绥化: 0.1 %绥化: 0.1 %绵阳: 0.6 %绵阳: 0.6 %聊城: 0.2 %聊城: 0.2 %芒廷维尤: 17.2 %芒廷维尤: 17.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.1 %苏州: 0.1 %衡水: 0.4 %衡水: 0.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 50.1 %西宁: 50.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.3 %达州: 0.3 %运城: 1.7 %运城: 1.7 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %黎逸府: 0.2 %黎逸府: 0.2 %其他其他AbseconChinaIndiaKorea Republic ofTaiwan, ChinaUnited States[]三明上海东莞中卫中山临汾丹东佛山保定信阳北京十堰南京南昌台州合肥哈密哈尔滨哥伦布天津太原宣城帕特雷常州广州弗吉尼亚州张家口张家界徐州德国成都扬州新乡昆明晋城普洱朝阳杭州松原武汉池州沈阳泸州洛阳淄博深圳温州湖州漯河烟台玉林石家庄秦皇岛绥化绵阳聊城芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵阳达州运城邯郸郑州重庆长沙长治黎逸府

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article views (1123) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return