Wu Hanyu, Zhang Xinjun, Wang Liangping, et al. Restraint of focus spot drift of electron-beam in bremsstrahlung radiation[J]. High Power Laser and Particle Beams, 2015, 27: 075105. doi: 10.11884/HPLPB201527.075105
Citation: Wu Wei, Wang Haiyang, Wu Gang, et al. Preliminary experimental investigation of field distribution characteristics in horizontally polarized bounded-wave EMP simulator with 9.5 m in height[J]. High Power Laser and Particle Beams, 2021, 33: 043005. doi: 10.11884/HPLPB202133.200303

Preliminary experimental investigation of field distribution characteristics in horizontally polarized bounded-wave EMP simulator with 9.5 m in height

doi: 10.11884/HPLPB202133.200303
  • Received Date: 2020-11-03
  • Rev Recd Date: 2021-03-11
  • Available Online: 2021-03-25
  • Publish Date: 2021-05-02
  • The electric field in a horizontally polarized bounded-wave electromagnetic pulse(EMP) simulator with 9.5 m in height are got by experimental measurement. The study of field distribution characteristics in the simulator based on the field, including the quantity analysis of the field uniformity in some domain and the method for defining the effective testing space in the simulator, is given. The domain of an effective space with the lowest horizontal plane 2 m away from the ground is estimated. The experimental results show that, the peak-value of the electric field of the testing point right under the bicone’s center with a distance of 5.5−7.5 m decreases inversely with the distance between the testing point and the bicone’s center. The effect of the discontinuous configuration of the bicone and the plane on the electric field in time domain of the testing points under the center is slower as the distance increases, but the influence of the ground on the field is quicker; The field along the leakage direction of the field in the simulator decreases more slowly than those along the bicone’s symmetric axis, as the testing-points located at a horizontal plane far away from the ground; The mean value of the normalized electric field in 12 m×12 m domain on the horizontal plane 1 m away from the ground in the simulator is 0.678, the corresponding standard deviation is 0.068 9, and the field uniformity is 2.039 dB.
  • [1]
    Baum C E. EMP simulators for various types of nuclear EMP environments: an interim categorization[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 35-53. doi: 10.1109/TAP.1978.1141794
    [2]
    Baum C E. Review of hybrid and equivalent-electric-dipole EMP simulators[R]. Sensor and Simulation Note 277, 1982.
    [3]
    孙凤杰, 罗学金, 李小伟, 等. 亚纳秒前沿有界波模拟器传输线设计的理论分析与实验[J]. 强激光与粒子束, 2008, 20(5):811-814. (Sun Fengjie, Luo Xuejin, Li Xiaowei, et al. Theoretical analysis and experimental varification on design of transmission line for subnanosecond risetime EMP simulator[J]. High Power Laser and Particle Beams, 2008, 20(5): 811-814
    [4]
    田春明, 王建国, 陈雨生, 等. 基于TEM喇叭的辐射波模拟器天线的近场特性[J]. 强激光与粒子束, 2004, 16(5):641-644. (Tian Chunming, Wang Jianguo, Chen Yusheng, et al. Near-field characteristics of radiating-wave simulator antenna based on TEM horn[J]. High Power Laser and Particle Beams, 2004, 16(5): 641-644
    [5]
    Giri D V, Baum C E. Design guidelines for flat-plate conical guided-wave EMP simulators with distributed terminators[R]. Sensor and Simulation Note 402, 1996.
    [6]
    谢彦召, 相辉, 聂鑫, 等. 不对称结构的分布式负载有界波电磁脉冲模拟器[J]. 强激光与粒子束, 2006, 18(10):1669-1672. (Xie Yanzhao, Xiang Hui, Nie Xin, et al. Design and construction of an asymmetrical bounded wave EMP simulator with distributed terminators[J]. High Power Laser and Particle Beams, 2006, 18(10): 1669-1672
    [7]
    潘晓东, 魏光辉, 任新智. 有界波模拟器内部电场分布仿真研究[J]. 测试技术学报, 2007, 21(5):410-413. (Pan Xiaodong, Wei Guanghui, Ren Xinzhi. Simulation research on electric field distribution in bounded-wave simulator[J]. Journal of Test and Measurement Technology, 2007, 21(5): 410-413
    [8]
    李云伟, 王泽忠, 刘峰. 有界波电磁脉冲模拟器参数对传播模式的影响[J]. 高电压技术, 2007, 33(5):54-57. (Li Yunwei, Wang Zezhong, Liu Feng. Influence of parameters of boundary electromagnetic pulse simulator on transmitting mode[J]. High Voltage Engineering, 2007, 33(5): 54-57
    [9]
    国海广, 魏光辉, 范丽思, 等. 快沿电磁脉冲模拟器内部垂直极化场分布仿真研[J]. 强激光与粒子束, 2009, 21(3):403-406. (Guo Haiguang, Wei Guanghui, Fan Lisi, et al. Simulation study on vertical field distribution of EMP simulator with fast risetime[J]. High Power Laser and Particle Beams, 2009, 21(3): 403-406
    [10]
    杜立航, 高成, 陈海林, 等. 金属挡板对平行线栅有界波模拟器的影响仿真研究[J]. 强激光与粒子束, 2018, 30:073204. (Du Lihang, Gao Cheng, Chen Hailin, et al. Simulation study on influence of metal plate on parallel wire-grid bounded-wave simulator[J]. High Power Laser and Particle Beams, 2018, 30: 073204
    [11]
    朱湘琴, 陈再高, 吴伟, 等. 离散电阻加载的大型垂直极化EMP辐射波模拟器的并行FDTD模拟[J]. 计算物理, 2019, 36(3):349-356. (Zhu Xiangqin, Chen Zaigao, Wu Wei, et al. Simulation of large vertically polarized EMP radiating wave simulator with discrete resistors using parallel FDTD method[J]. Chinese Journal of Computational Physics, 2019, 36(3): 349-356
    [12]
    谢秦川, 陈明, 李进玺, 等. 水平极化电磁脉冲模拟器空间场的数值模拟[J]. 强激光与粒子束, 2004, 16(10):1304-1306. (Xie Qinchuan, Chen Ming, Li Jinxi, et al. Numerical simulation of space-time distribution of field of horizontally polarized electromagnetic pulse simulators[J]. High Power Laser and Particle Beams, 2004, 16(10): 1304-1306
    [13]
    朱湘琴, 王建国, 蔡利兵, 等. 辐射波电磁脉冲模拟器笼形天线辐射特性的并行计算[J]. 强激光与粒子束, 2011, 23(6):1597-1601. (Zhu Xiangqin, Wang Jianguo, Cai Libing, et al. Parallel computation for radiation characteristics of cage antenna of radiating-wave EMP simulator[J]. High Power Laser and Particle Beams, 2011, 23(6): 1597-1601 doi: 10.3788/HPLPB20112306.1597
    [14]
    朱湘琴, 吴伟, 王海洋. 大型双锥椭圆笼形天线关键参数的影响分析[J]. 电波科学学报, 2021, 36(1):127-135. (Zhu Xiangqin, Wu Wei, Wang Haiyang. The effect analysis of key parameters of large biconical-ellipsoid cage antenna[J]. Chinese Journal of Radio Science, 2021, 36(1): 127-135
    [15]
    毛从光, 周辉. 辐射波HEMP模拟器关键参数数值分析[J]. 核电子学与探测技术, 2009, 29(6):1348-1352. (Mao Congguang, Zhou Hui. Key parameters analysis of hybrid HEMP simulator[J]. Nuclear Electronics & Detection Technology, 2009, 29(6): 1348-1352
    [16]
    Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2254-2258.
    [17]
    朱湘琴, 吴伟, 张国伟, 等. 大型水平极化电磁脉冲有界波模拟器的并行模拟分析[J]. 计算物理, 2019, 36(6):691-698. (Zhu Xiangqin, Wu Wei, Zhang Guowei, et al. Parallel simulation and analysis of large EMP bounded wave simulator with horizontal polarization[J]. Chinese Journal of computational Physics, 2019, 36(6): 691-698
    [18]
    朱湘琴, 吴伟, 王海洋. 大型水平极化电磁脉冲有界波模拟器的辐射场分布特性分析[J]. 现代应用物理, 2020, 11:040502. (Zhu Xiangqin, Wu Wei, Wang Haiyang. Characteristics of radiation electric field distribution in large EMP bounded wave simulator with horizontal polarization[J]. Modern Applied Physics, 2020, 11: 040502
    [19]
    IEC61000-4-25. Testing and measurement techniques—high-altitude electromagnetic impulse HEMP simulator compendium[S].
    [20]
    卢万铮. 天线理论与技术[M]. 西安: 西安电子科技大学出版社, 2004.

    Lu Wanzheng. Antenna theory and techniques[M]. Xi’an: Xidian University Press, 2004.
    [21]
    Groh C, Karst J P, Koch M, et al. TEM waveguides for EMC measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 1999, 41(4): 440-445. doi: 10.1109/15.809846
  • Relative Articles

    [1]Shang Tianbo, Yang Wei¹, Song Mengmeng, Zhou Qianhong. A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges[J]. High Power Laser and Particle Beams, 2024, 36(3): 033002. doi: 10.11884/HPLPB202436.230335
    [2]Fang Jianwei, Hong Yuanzhi, Wang Yigang, Wei Wei, Zhu Bangle, Ge Xiaoqin, Bian Baoyuan, Zhang Wenli, Wang Yong. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33(7): 074003. doi: 10.11884/HPLPB202133.210035
    [3]He Yun, Yang Jing, Miao Guanghui, Zhang Na, Cui Wanzhao. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32(3): 033003. doi: 10.11884/HPLPB202032.190318
    [4]Zhang Xiaodong, Ouyang Xiaoping, Weng Xiufeng, Jiang Wen'gang, Zhang Jianfu, Tan Xinjian, He Junzhang, Wei Chen. Gamma ray sensitivity of neutron detector based on microchannel plate[J]. High Power Laser and Particle Beams, 2018, 30(4): 044002. doi: 10.11884/HPLPB201830.170388
    [5]Meng Xiaohui, Dong Zhiwei. Simulation study of secondary electron effect of proton beam bombardment on metallic target surface[J]. High Power Laser and Particle Beams, 2018, 30(6): 064002. doi: 10.11884/HPLPB201830.170498
    [6]Li Kaiwei. Secondary electron multipacting in proton bunch[J]. High Power Laser and Particle Beams, 2016, 28(09): 095102. doi: 10.11884/HPLPB201628.151292
    [7]Ke Jianlin, Hu Yonghong, Zhou Changgeng, Qiu Rui, He Tie, Liu Yuguo. Measurement of beam currents downstream from strong electric field[J]. High Power Laser and Particle Beams, 2016, 28(11): 115102. doi: 10.11884/HPLPB201527.160119
    [8]Wang Qiangqiang, Deng Keli, Deng Caibo, Deng Bo, Yuan Zheng, Chen Tao, Dong Jianjun, Cao Zhurong, Liu Shenye, Jiang Shaoen. Three-dimensional numeric simulation of multiplication process of secondary electrons in microchannel plate[J]. High Power Laser and Particle Beams, 2015, 27(12): 124005. doi: 10.11884/HPLPB201527.124005
    [9]Shao Yan, Lu Zhongtao, Xu Derong, Xu Hongliang. Numerical simulation of electron beam current amplification characteristic in diamond film[J]. High Power Laser and Particle Beams, 2015, 27(05): 055105. doi: 10.11884/HPLPB201527.055105
    [10]Zhang Zhongbing, Chen Liang, Ruan Jinlu, Liu Jinliang, Ouyang Xiaoping, Ye Ming, He Yongning, Liu Jun, Liu Linyue. Effects of secondary electron emission on high-precision intensity measurements of proton[J]. High Power Laser and Particle Beams, 2014, 26(09): 094004. doi: 10.11884/HPLPB201426.094004
    [11]Li Feng, Wang Meng, Ren Jing, Fang Dongfan, Kang Junjun, Xu Le, Yang Zun. Characteristics of grooved insulator flashover under pulsed voltage[J]. High Power Laser and Particle Beams, 2014, 26(04): 045049. doi: 10.11884/HPLPB201426.045049
    [12]You Jianwei, Zhang Jianfeng, Li Yun, Wang Hongguang. Research and extension of Vaughan’s secondary electron emission[J]. High Power Laser and Particle Beams, 2013, 25(11): 3035-3039. doi: 10.3788/HPLPB20132511.3035
    [13]Wang Xiaohu, Yang Zhen, Zhang Linwen, Long Jidong, Wei Tao, Yang Guojun, Zhang Zhuo. An ion beam profiler based on secondary electron emission[J]. High Power Laser and Particle Beams, 2013, 25(08): 2121-2124. doi: 10.3788/HPLPB20132508.2121
    [14]yang zhiwen, chen tao, yuan zheng, liu shenye, xiao shali. Analytic simulation research on steady-state characteristics of X-ray framing camera[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [15]xie aigen, zhang jian, wu hongyan, wang tiebang. Angular distribution of secondary electron emitted from polycrystalline surfaces[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [16]zhao xiaoyun, liu jinyuan, ni zhixiang, he juan. Characteristic of plasma sheath in the presence of secondary electron emission and negative ions[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [17]ying xuhua, hao jianhong, fan jieqing. Analysis of two-surface multipactor discharge[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [18]xiao qiong, peng xiao-hua. Non-linear pressure rise with beam current in BEPCⅡ positron ring[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [19]chen xi, du zheng-wei, gong ke. Influence of circuit during injection of EMP into bipolar junction transitor[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [20]xie ai-gen, pei yuan-ji, sun hong-bing, wang rong. Relation of incident energy of high energy primary electron and real efficient secondary electron emission coefficient of metal emitter[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.1 %FULLTEXT: 22.1 %META: 75.9 %META: 75.9 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %Kao-sung: 0.2 %Kao-sung: 0.2 %[]: 0.1 %[]: 0.1 %上海: 1.8 %上海: 1.8 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 17.7 %北京: 17.7 %十堰: 0.1 %十堰: 0.1 %台州: 1.0 %台州: 1.0 %合肥: 0.5 %合肥: 0.5 %哈尔科夫: 0.3 %哈尔科夫: 0.3 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.1 %嘉兴: 0.1 %大田广域: 0.1 %大田广域: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.6 %天津: 0.6 %宁波: 0.4 %宁波: 0.4 %宣城: 0.5 %宣城: 0.5 %广州: 0.7 %广州: 0.7 %张家口: 0.5 %张家口: 0.5 %成都: 0.1 %成都: 0.1 %扬州: 0.9 %扬州: 0.9 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %景德镇: 0.1 %景德镇: 0.1 %杭州: 1.6 %杭州: 1.6 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %淄博: 0.3 %淄博: 0.3 %淮南: 0.1 %淮南: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.5 %温州: 0.5 %湖州: 0.9 %湖州: 0.9 %漯河: 2.0 %漯河: 2.0 %潍坊: 0.1 %潍坊: 0.1 %白银: 0.2 %白银: 0.2 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 22.6 %芒廷维尤: 22.6 %芝加哥: 0.5 %芝加哥: 0.5 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 36.6 %西宁: 36.6 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %辽阳: 0.1 %辽阳: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %重庆: 0.3 %重庆: 0.3 %钦州: 0.2 %钦州: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.4 %长治: 0.4 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他ChinaIndiaKao-sung[]上海中山临汾丹东兰州北京十堰台州合肥哈尔科夫哥伦布嘉兴大田广域大连天津宁波宣城广州张家口成都扬州昆明晋城普洱景德镇杭州武汉沈阳淄博淮南深圳温州湖州漯河潍坊白银石家庄秦皇岛绵阳肇庆芒廷维尤芝加哥衢州襄阳西宁西安贵阳辽阳运城邯郸郑州重庆钦州长沙长治香港特别行政区马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1062) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return