Citation: | Li Yue, Dong Kegong, Li Fengyun, et al. 300 W high power supercontinuum generation of complete visible spectrum by long tapered photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33: 021002. doi: 10.11884/HPLPB202133.200305 |
An all-fiber supercontinuum generation system is built based on a long tapered photonic crystal fiber with small core diameter, large duty cycle and gragual core change. The system uses high power picoseconds seed source pumping to achieve 314.7 W high power supercontinuum output covering all visible light with spectrum coverage 388−2400 nm. It takes into account high power and blue shift enhancement in the shortwave direction at the same time, and it has the highest power of supercontinuum covering full visible spectrum publicly reported at home and abroad.
[1] |
Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 via four-photon coupling in glass[J]. Physical Review Letters, 1970, 24(11): 584-587. doi: 10.1103/PhysRevLett.24.584
|
[2] |
Knight J C. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851. doi: 10.1038/nature01940
|
[3] |
Jones D J. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639. doi: 10.1126/science.288.5466.635
|
[4] |
Morioka T, Mori K, Kawanishi S, et al. Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers[J]. IEEE Photonics Technology Letters, 1994, 6(3): 365-368. doi: 10.1109/68.275490
|
[5] |
宋锐, 侯静, 陈胜平, 等. 177.6 W全光纤超连续谱光源[J]. 物理学报, 2012, 61:054217. (Song Rui, Hou Jing, Chen Shengping, et al. All-fiber 177.6 W supercontinuum source177.6 W[J]. Acta Physica Sinica, 2012, 61: 054217 doi: 10.7498/aps.61.054217
|
[6] |
Zou Xin, QiuJifang, Wang Xiaodong, et al. An all-fiber supercontinuum source with 30.6 W high power and ultra-wide spectrum ranging from 385 nm to beyond 2400 nm[J]. IEEE Photonics Journal, 2017(2): 1.
|
[7] |
Gao Shoufei, Wang Yingying, Sun Ruoyu, et al. Blue-enhanced supercontinuum generation pumped by a giant-chirped SESAM mode-locked fiber laser[J]. Applied Physics B, 2016, 122: 229.
|
[8] |
Li Yue, Dong Kegong, Yan Donglin, et al. Investigation of shortwave edge in high-power supercontinuum with different peak power[C]//Proc of SPIE. 2019: 111810L)
|
[9] |
Travers J C, Popov S V, Taylor J R. Extended blue supercontinuum generation in cascaded holey fibers[J]. Optics Letters, 2005, 30(23): 3132-4. doi: 10.1364/OL.30.003132
|
[10] |
Zhang Haoyu, Li Yue, Yan Donglin, et al. All-fiber high power supercontinuum generation by cascaded photonic crystal fibers ranging from 370 nm to 2400 nm[J]. IEEE Photonics Journal, 2020(99): 1.
|
[11] |
Kudlinski A, George A K, Knight J C, et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation[J]. Optics Express, 2006, 14(12): 5715-5722. doi: 10.1364/OE.14.005715
|
[12] |
Møller U, Sørensen S T, Larsen C, et al. Power dependence of supercontinuum noise in uniform and tapered PCFs[J]. Optics Express, 2012, 20(3): 2851-2857. doi: 10.1364/OE.20.002851
|
[13] |
Qi Xue, Chen Shengping, Li Zhihong, et al. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016nm[J]. Optics Letters, 2018, 43(5): 1019-1022. doi: 10.1364/OL.43.001019
|
[14] |
Stone J M, Knight J C, Clowes J. Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser[J]. Optics Express, 2008, 16(4): 2670-2675. doi: 10.1364/OE.16.002670
|
[15] |
Stark S P, Podlipensky A, Joly N Y, et al. Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber[J]. Journal of the Optical Society of America B, 2010, 27(3): 592-598. doi: 10.1364/JOSAB.27.000592
|