Li Weibin, Wu Yi, Ren Qinghua, et al. Synchronization signal processing system of thyristor power supply based on NI CompactRIO[J]. High Power Laser and Particle Beams, 2021, 33: 036003. doi: 10.11884/HPLPB202133.200296
Citation: Xia Qianxu, Zhao Quantang, Zong Yang, et al. Design of 325 MHz RF grid-controlled high voltage thermionic cathode electron gun[J]. High Power Laser and Particle Beams, 2021, 33: 044009. doi: 10.11884/HPLPB202133.200310

Design of 325 MHz RF grid-controlled high voltage thermionic cathode electron gun

doi: 10.11884/HPLPB202133.200310
  • Received Date: 2020-11-16
  • Rev Recd Date: 2021-03-15
  • Available Online: 2021-03-26
  • Publish Date: 2021-05-02
  • The electron gun with high repetition rate and high average current has a very wide range of applications. This paper presents the design of a microwave grid-controlled high-voltage thermionic electron gun working in CW mode with a bunch repetition rate of 325 MHz and elaborates the experimental principles of this kind of electron guns. Firstly, simulation software EGUN, POISSON (Poisson Superfish) and GPT (General Particle Tracer) are used to accomplish the structure design of a300kV high-voltage DC electron gun and beam dynamics verification.Secondly, to feed the microwave into the gap between the cathode and the grid of the electron gunefficiently, design of a power supply with a scheme of impedance matching from the radio frequency power source to the cathode is completed.Accordingly, a 325 MHz dual-mode coaxial power supply device is designed, and its feasibility is verified and analyzed..
  • [1]
    高峰, 林力, 刘宇昊, 等. 医用同位素生产现状及技术展望[J]. 同位素, 2016, 29(2):116-120. (Gao Feng, Lin Li, Liu Yuhao, et al. Production situation and technology prospect of medical isotopes[J]. Journal of Isotopes, 2016, 29(2): 116-120 doi: 10.7538/tws.2016.29.02.0116
    [2]
    Martins M N, Silva T F. Electron accelerators: History, applications, and perspectives[J]. Radiation Physics and Chemistry, 2014, 95: 78-85. doi: 10.1016/j.radphyschem.2012.12.008
    [3]
    NagaiY. Medical isotope production using accelerator neutrons[C]//11th International Topical Meeting on Nuclear Applications of Accelerators. 2013: 47-49.
    [4]
    金晓, 黎明, 许州, 等. 中国工程物理研究院远红外自由电子激光实验研究[J]. 高能物理与核物理, 2006, 30(s1):96-98. (Jin Xiao, Li Ming, Xu Zhou, et al. Experiment study on the CAEP FIR-FEL[J]. High Energy Physics and Nuclear Physics, 2006, 30(s1): 96-98
    [5]
    Xu Hanxun, Shi Jiaru, Du Yingchao, et al. Development of an L-band photocathode RF gun at Tsinghua University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164675. doi: 10.1016/j.nima.2020.164675
    [6]
    邓文娟. GaAs阵列光电阴极的结构设计与制备研究[D]. 武汉: 华中科技大学, 2018.

    Deng Wenjuan. Research on structure design and preparation of GaAs wire-array photocathode[D]. Wuhan: Huazhong University of Science and Technology, 2018
    [7]
    Bylinskii I, Ames F, Baartman R, et al. An electron linac photo-fission driver for the rare isotope program at TRIUMF[C]//Proceedings of the 23rd Particle Accelerator Conference. Vancouver, Canada, 2009.
    [8]
    Ortega J M, Glotin F, Prazeres R. Extension in far-infrared of the CLIO free-electron laser[J]. Infrared Physics & Technology, 2006, 49(1-2): 133-138.
    [9]
    Jongen Y, Abs M, Genin F, et al. The Rhodotron, a new 10 MeV, 100 kW, CW metric wave electron accelerator[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993, 79(1-4): 865-870. doi: 10.1016/0168-583X(93)95487-P
    [10]
    易春蓉. 基于碳纳米管及其复合阴极的场致发射器件的制备与性能[D]. 上海: 华东师范大学, 2020.

    Yi Chunrong. Preparation and performance of field-emission devices based on carbon nanotubes and their composite cathodes[D]. Shanghai: East China Normal University, 2020
    [11]
    沈春英, 丘泰, 李晓云. 高性能浸渍型阴极材料研究进展[J]. 材料导报, 2005, 19(3):25-27. (Shen Chunying, Qiu Tai, Li Xiaoyun. Advances in dispenser cathodes materials with high properties[J]. Materials Review, 2005, 19(3): 25-27 doi: 10.3321/j.issn:1005-023X.2005.03.008
    [12]
    Shintake T, Tanaka T, Hara T, et al. Status of SPring-8 compact SASE source FEL project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 382-387.
    [13]
    Asaka T, Inagaki T, Magome T, et al. Low-emittance radio-frequency electron gun using a gridded thermionic cathode[J]. Physical Review Accelerators and Beams, 2020, 23: 063401. doi: 10.1103/PhysRevAccelBeams.23.063401
    [14]
    Park S J, Oh J S, Bak J S, et al. 2.856-GHz modulation of conventional triode electron gun[J]. arXiv preprint physics/0008035, 2000)
    [15]
    Park S J, Hwang W H, Cho M H, et al. Design of coaxial resonant cavity for triode RF gun[C]//KEK Proceedings. National Laboratory for High Energy Physics, 1998: 746-748.
    [16]
    Auslender V L, Batazova M A, Kuznetsov G I, et al. Triode RF gun for linear electron accelerators[C]//The 3rd Asian Particle Accelerator Conference APAC. 2004: 273-275.
    [17]
    Volkov V N, Arbuzov V, Kenzhebulatov E, et al. Latest results of CW 100 mA electron RF gun for Novosibirsk ERL based FEL[C]//Proceedings of the 29th Linear Accelerator Conference(LINAC'18). Beijing, China: JACOW Publishing, 2019: 598-600.
    [18]
    周方洁. 行波管电子枪热初速的理论及分析[D]. 成都: 电子科技大学, 2018.

    Zhou Fangjie. Theory and analysis of thermal initial velocity of traveling wave tube electron gun[D]. Chengdu: University of Electronic Science and Technology, 2018
  • Relative Articles

    [1]Ding Baiwen, Hao Jianhong, Zhang Fang, Zhao Qiang, Fan Jieqing, Dong Zhiwei. Simulation and source design of large area uniform bremsstrahlung field[J]. High Power Laser and Particle Beams, 2024, 36(12): 124003. doi: 10.11884/HPLPB202436.240175
    [2]Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478
    [3]Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143
    [4]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [5]Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029
    [6]Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481
    [7]Yang Bo, Qiu Rui, Lu Wei, Wu Zhen, Li Chunyan, Zhang Hui, Li Junli. Shielding study of hard X-rays produced by high-intensity laser interaction with solid targets[J]. High Power Laser and Particle Beams, 2017, 29(07): 071007. doi: 10.11884/HPLPB201729.170006
    [8]Zhu Pengfei, Ye Yan, Li Zuoyou, Yang Qingguo, Qi Shuangxi, Qian Weixin, Chen Jinming. Numerical simulation study of effects of X-ray scattering on areal density measurement results[J]. High Power Laser and Particle Beams, 2015, 27(06): 064001. doi: 10.11884/HPLPB201527.064001
    [9]Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189
    [10]Zhao Mo, Cheng Yinhui, Wu Wei, Ma Liang, Li Jinxi, Zhou Hui, Li Baozhong, Zhu Meng. Numerical simulation for calculating transient response of coaxial line with diode to pulsed X-ray[J]. High Power Laser and Particle Beams, 2013, 25(02): 490-494. doi: 10.3788/HPLPB20132502.0490
    [11]Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211
    [12]Yang Zuhua, Zhao Zongqing, Tan Fang, Cao Leifeng, Gu Yuqiu, Xiao Shali, Yan Yonghong, Yu Jinqing, Fan Wei, Qian Feng. Numerical simulation of betatron X-ray emission from laser-produced wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2012, 24(08): 1851-1855. doi: 10.3788/HPLPB20122408.1851
    [13]Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965
    [14]wang xiaomin, yang chao, liu dagang, wang xueqiong. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [15]zhang pengfei, li yongdong, yang hailiang, qiu aici, liu chunliang, wang hongguang, guo fan, su zhaofeng, sun jianfeng, sun jiang, gao yi. Simulation of loss electron in vacuum magnetically insulated transmission lines[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [16]qin feng, chang anbi, ding enyan, luo min. Particle-in-cell simulation of pseudospark switch based on particle-in-cell plus Monte-Carlo collision method[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [17]li yongdong, wang hongguang, liu chunliang, zhou yan, liu meiqin. Compensated particle in cell-Monte Carlo collision model with wide time step limit[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [18]he hu, lu qing xiang. Particle simulation and optimization design of the Xband transit time tube oscillator[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]mu wei-bing, chen pan-xun. Simulative calculation of the dose enhancement factor of W-SiO2 and Ta-SiO2 interface[J]. High Power Laser and Particle Beams, 2001, 13(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 顾余辉. 直线加速器维修维护及质控措施研究分析. 中国设备工程. 2024(07): 48-50 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.3 %FULLTEXT: 23.3 %META: 75.5 %META: 75.5 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %United States: 0.3 %United States: 0.3 %[]: 0.3 %[]: 0.3 %上海: 1.0 %上海: 1.0 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.3 %丽水: 0.3 %北京: 24.0 %北京: 24.0 %北莱茵-威斯特法伦州: 0.4 %北莱茵-威斯特法伦州: 0.4 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %安康: 0.1 %安康: 0.1 %广州: 0.2 %广州: 0.2 %弗吉: 0.3 %弗吉: 0.3 %张家口: 0.6 %张家口: 0.6 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.1 %杭州: 1.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.1 %湖州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 10.9 %芒廷维尤: 10.9 %衢州: 0.4 %衢州: 0.4 %西宁: 52.3 %西宁: 52.3 %西安: 0.6 %西安: 0.6 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他ChinaIndiaUnited States[]上海中山临汾丹东丽水北京北莱茵-威斯特法伦州台州合肥安康广州弗吉张家口新乡晋城普洱杭州桃园武汉深圳湖州秦皇岛绵阳芒廷维尤衢州西宁西安达拉斯运城郑州重庆长治阳泉黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (1441) PDF downloads(113) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return