Citation: | Xia Qianxu, Zhao Quantang, Zong Yang, et al. Design of 325 MHz RF grid-controlled high voltage thermionic cathode electron gun[J]. High Power Laser and Particle Beams, 2021, 33: 044009. doi: 10.11884/HPLPB202133.200310 |
[1] |
高峰, 林力, 刘宇昊, 等. 医用同位素生产现状及技术展望[J]. 同位素, 2016, 29(2):116-120. (Gao Feng, Lin Li, Liu Yuhao, et al. Production situation and technology prospect of medical isotopes[J]. Journal of Isotopes, 2016, 29(2): 116-120 doi: 10.7538/tws.2016.29.02.0116
|
[2] |
Martins M N, Silva T F. Electron accelerators: History, applications, and perspectives[J]. Radiation Physics and Chemistry, 2014, 95: 78-85. doi: 10.1016/j.radphyschem.2012.12.008
|
[3] |
NagaiY. Medical isotope production using accelerator neutrons[C]//11th International Topical Meeting on Nuclear Applications of Accelerators. 2013: 47-49.
|
[4] |
金晓, 黎明, 许州, 等. 中国工程物理研究院远红外自由电子激光实验研究[J]. 高能物理与核物理, 2006, 30(s1):96-98. (Jin Xiao, Li Ming, Xu Zhou, et al. Experiment study on the CAEP FIR-FEL[J]. High Energy Physics and Nuclear Physics, 2006, 30(s1): 96-98
|
[5] |
Xu Hanxun, Shi Jiaru, Du Yingchao, et al. Development of an L-band photocathode RF gun at Tsinghua University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164675. doi: 10.1016/j.nima.2020.164675
|
[6] |
邓文娟. GaAs阵列光电阴极的结构设计与制备研究[D]. 武汉: 华中科技大学, 2018.
Deng Wenjuan. Research on structure design and preparation of GaAs wire-array photocathode[D]. Wuhan: Huazhong University of Science and Technology, 2018
|
[7] |
Bylinskii I, Ames F, Baartman R, et al. An electron linac photo-fission driver for the rare isotope program at TRIUMF[C]//Proceedings of the 23rd Particle Accelerator Conference. Vancouver, Canada, 2009.
|
[8] |
Ortega J M, Glotin F, Prazeres R. Extension in far-infrared of the CLIO free-electron laser[J]. Infrared Physics & Technology, 2006, 49(1-2): 133-138.
|
[9] |
Jongen Y, Abs M, Genin F, et al. The Rhodotron, a new 10 MeV, 100 kW, CW metric wave electron accelerator[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993, 79(1-4): 865-870. doi: 10.1016/0168-583X(93)95487-P
|
[10] |
易春蓉. 基于碳纳米管及其复合阴极的场致发射器件的制备与性能[D]. 上海: 华东师范大学, 2020.
Yi Chunrong. Preparation and performance of field-emission devices based on carbon nanotubes and their composite cathodes[D]. Shanghai: East China Normal University, 2020
|
[11] |
沈春英, 丘泰, 李晓云. 高性能浸渍型阴极材料研究进展[J]. 材料导报, 2005, 19(3):25-27. (Shen Chunying, Qiu Tai, Li Xiaoyun. Advances in dispenser cathodes materials with high properties[J]. Materials Review, 2005, 19(3): 25-27 doi: 10.3321/j.issn:1005-023X.2005.03.008
|
[12] |
Shintake T, Tanaka T, Hara T, et al. Status of SPring-8 compact SASE source FEL project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 382-387.
|
[13] |
Asaka T, Inagaki T, Magome T, et al. Low-emittance radio-frequency electron gun using a gridded thermionic cathode[J]. Physical Review Accelerators and Beams, 2020, 23: 063401. doi: 10.1103/PhysRevAccelBeams.23.063401
|
[14] |
Park S J, Oh J S, Bak J S, et al. 2.856-GHz modulation of conventional triode electron gun[J]. arXiv preprint physics/0008035, 2000)
|
[15] |
Park S J, Hwang W H, Cho M H, et al. Design of coaxial resonant cavity for triode RF gun[C]//KEK Proceedings. National Laboratory for High Energy Physics, 1998: 746-748.
|
[16] |
Auslender V L, Batazova M A, Kuznetsov G I, et al. Triode RF gun for linear electron accelerators[C]//The 3rd Asian Particle Accelerator Conference APAC. 2004: 273-275.
|
[17] |
Volkov V N, Arbuzov V, Kenzhebulatov E, et al. Latest results of CW 100 mA electron RF gun for Novosibirsk ERL based FEL[C]//Proceedings of the 29th Linear Accelerator Conference(LINAC'18). Beijing, China: JACOW Publishing, 2019: 598-600.
|
[18] |
周方洁. 行波管电子枪热初速的理论及分析[D]. 成都: 电子科技大学, 2018.
Zhou Fangjie. Theory and analysis of thermal initial velocity of traveling wave tube electron gun[D]. Chengdu: University of Electronic Science and Technology, 2018
|
[1] | Ding Baiwen, Hao Jianhong, Zhang Fang, Zhao Qiang, Fan Jieqing, Dong Zhiwei. Simulation and source design of large area uniform bremsstrahlung field[J]. High Power Laser and Particle Beams, 2024, 36(12): 124003. doi: 10.11884/HPLPB202436.240175 |
[2] | Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478 |
[3] | Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143 |
[4] | Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222 |
[5] | Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029 |
[6] | Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481 |
[7] | Yang Bo, Qiu Rui, Lu Wei, Wu Zhen, Li Chunyan, Zhang Hui, Li Junli. Shielding study of hard X-rays produced by high-intensity laser interaction with solid targets[J]. High Power Laser and Particle Beams, 2017, 29(07): 071007. doi: 10.11884/HPLPB201729.170006 |
[8] | Zhu Pengfei, Ye Yan, Li Zuoyou, Yang Qingguo, Qi Shuangxi, Qian Weixin, Chen Jinming. Numerical simulation study of effects of X-ray scattering on areal density measurement results[J]. High Power Laser and Particle Beams, 2015, 27(06): 064001. doi: 10.11884/HPLPB201527.064001 |
[9] | Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189 |
[10] | Zhao Mo, Cheng Yinhui, Wu Wei, Ma Liang, Li Jinxi, Zhou Hui, Li Baozhong, Zhu Meng. Numerical simulation for calculating transient response of coaxial line with diode to pulsed X-ray[J]. High Power Laser and Particle Beams, 2013, 25(02): 490-494. doi: 10.3788/HPLPB20132502.0490 |
[11] | Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211 |
[12] | Yang Zuhua, Zhao Zongqing, Tan Fang, Cao Leifeng, Gu Yuqiu, Xiao Shali, Yan Yonghong, Yu Jinqing, Fan Wei, Qian Feng. Numerical simulation of betatron X-ray emission from laser-produced wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2012, 24(08): 1851-1855. doi: 10.3788/HPLPB20122408.1851 |
[13] | Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965 |
[14] | wang xiaomin, yang chao, liu dagang, wang xueqiong. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- . |
[15] | zhang pengfei, li yongdong, yang hailiang, qiu aici, liu chunliang, wang hongguang, guo fan, su zhaofeng, sun jianfeng, sun jiang, gao yi. Simulation of loss electron in vacuum magnetically insulated transmission lines[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[16] | qin feng, chang anbi, ding enyan, luo min. Particle-in-cell simulation of pseudospark switch based on particle-in-cell plus Monte-Carlo collision method[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[17] | li yongdong, wang hongguang, liu chunliang, zhou yan, liu meiqin. Compensated particle in cell-Monte Carlo collision model with wide time step limit[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- . |
[18] | he hu, lu qing xiang. Particle simulation and optimization design of the Xband transit time tube oscillator[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- . |
[19] | mu wei-bing, chen pan-xun. Simulative calculation of the dose enhancement factor of W-SiO2 and Ta-SiO2 interface[J]. High Power Laser and Particle Beams, 2001, 13(01): 0- . |
1. | 顾余辉. 直线加速器维修维护及质控措施研究分析. 中国设备工程. 2024(07): 48-50 . ![]() |