Volume 33 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Zeng Xin, Qu Zhaowei, Xue Qianzhong. Research of G-band extended interaction klystron broadband beam-wave interaction system[J]. High Power Laser and Particle Beams, 2021, 33: 033007. doi: 10.11884/HPLPB202133.200313
Citation: Zeng Xin, Qu Zhaowei, Xue Qianzhong. Research of G-band extended interaction klystron broadband beam-wave interaction system[J]. High Power Laser and Particle Beams, 2021, 33: 033007. doi: 10.11884/HPLPB202133.200313

Research of G-band extended interaction klystron broadband beam-wave interaction system

doi: 10.11884/HPLPB202133.200313
  • Received Date: 2020-11-18
  • Rev Recd Date: 2021-02-08
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • Extended interaction klystron adopts multi-gap distributed interaction resonantor and all metal planar structure, which makes the interaction circuit short and the gain per length high. Its planarization structure is compatible with modern micromachining technology, which has made it a research hotspot to develop terahertz high-power source. Further extending the bandwidth of the extended interaction amplifier becomes the key technology to expand its application. A G-band 5-cavity multi-gap beam-wave interaction circuit is designed in this paper. Stagger tuning technology is used to expand the cluster bandwidth and filter loading technology is used to expand the output circuit bandwidth. Structural parameter optimization and output characteristic simulation by CST show that when the electron beam voltage is 19 kV, the current is 300 mA and the input power is 120 mW, the output power is 222 W, the electron efficiency is 3.89%, the gain is 32.67 dB, and the 3 dB instantaneous bandwidth reaches 1.5 GHz.
  • loading
  • [1]
    Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2]
    Kemp T F, Dannatt H R W, Barrow N S, et al. Dynamic nuclear polarization enhanced NMR at 187 GHz/284 MHz using an extended interaction klystron amplifier[J]. Journal of Magnetic Resonance, 2016, 265: 77-82. doi: 10.1016/j.jmr.2016.01.021
    [3]
    胡林林, 曾造金, 陈洪斌, 等. 毫米波/太赫兹扩展互作用速调管放大器的应用及研究进展[J]. 电子学报, 2019, 47(1):211-219. (Hu Linlin, Zeng Zaojin, Chen Hongbin, et al. Application and development of extended interaction klystrons in millimeter-wave and terahertz band[J]. Acta Electronica Sinica, 2019, 47(1): 211-219 doi: 10.3969/j.issn.0372-2112.2019.01.028
    [4]
    Hyttinen M, Roitman A, Horoyski P, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//Proceedings of the 2008 IEEE International Vacuum Electronics Conference. 2008: 297.
    [5]
    Patrick M A, Holt J A, Joye C D, et al. Range resolved mode mixing in a large volume for the mitigation of speckle and strategic target orientation requirements in active millimeter-wave imaging[J]. Journal of the Optical Society of America A, 2015, 32(4): 637-646. doi: 10.1364/JOSAA.32.000637
    [6]
    韦莹, 杨继涛, 周军, 等. W波段分布作用速调管的研制[J]. 强激光与粒子束, 2020, 32:103007. (Wei Ying, Yang Jitao, Zhou Jun, et al. Design of a W-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103007 doi: 10.11884/HPLPB202032.200207
    [7]
    Li Renjie, Ruan Cunjun, Zhang Huangfeng. Design and optimization of G-band extended interaction klystron with high output power[J]. Physics of Plasmas, 2018, 25: 033107. doi: 10.1063/1.5012018
    [8]
    Li Renjie, Ruan Cunjun, Zhang Huangfeng, et al. Theoretical design and numerical simulation of beam-wave Interaction for G-band unequal-length slots EIK with rectangular electron beam[J]. IEEE Transactions on Electron Devices, 2018, 65(8): 3500-3506. doi: 10.1109/TED.2018.2846580
    [9]
    Li Renjie, Ruan Cunjun, Zhang Huangfeng, et al. Optimization and improvement of output performance in G-band extended interaction klystron[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40(1): 5-16. doi: 10.1007/s10762-018-0546-7
    [10]
    张长青, 冯进军, 蔡军, 等. G波段500 W带状注扩展互作用速调管设计研究[J]. 强激光与粒子束, 2020, 32:103003. (Zhang Changqing, Feng Jinjun, Cai Jun, et al. Design of G-band 500 W sheet beam extended-interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103003 doi: 10.11884/HPLPB202032.200195
    [11]
    张长青, 阮存军, 王树忠, 等. 梯形结构高功率扩展互作用速调管[J]. 红外与毫米波学报, 2015, 34(3):307-313. (Zhang Changqing, Ruan Cunjun, Wang Shuzhong, et al. High-power extended-interaction klystron with ladder-type structure[J]. Journal of Infrared and Millimeter Wave, 2015, 34(3): 307-313 doi: 10.11972/j.issn.1001-9014.2015.03.010
    [12]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010: 200-246.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010: 200-246
    [13]
    葛萌, 王勇. Ka波段滤波器加载三间隙耦合腔输出回路的仿真和测试[J]. 真空科学与技术学报, 2013, 33(3):219-223. (Ge Meng, Wang Yong. Simulation and cold test of Ka-band filter loaded three-gap coupled output cavity[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(3): 219-223 doi: 10.3969/j.issn.1672-7126.2013.03.05
    [14]
    谢兴娟, 丁耀根, 刘濮鲲, 等. 群时延时间法求解速调管输出腔的特性参数[J]. 强激光与粒子束, 2012, 24(1):152-156. (Xie Xingjuan, Ding Yaogen, Liu Pukun, et al. Characteristic parameter calculation for output cavity of klystron with group delay time method[J]. High Power Laser and Particle Beams, 2012, 24(1): 152-156 doi: 10.3788/HPLPB20122401.0152
    [15]
    谢兴娟, 黄传禄, 董玉和, 等. 双间隙同轴腔加载波导滤波器输出回路设计[J]. 强激光与粒子束, 2012, 24(8):1925-1930. (Xie Xingjuan, Huang Chuanlu, Dong Yuhe, et al. Output circuit design for double gap coaxial cavity loaded with waveguide filter[J]. High Power Laser and Particle Beams, 2012, 24(8): 1925-1930 doi: 10.3788/HPLPB20122408.1925
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (1214) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return