Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103
Citation: Li Ruichun, Zhang Qinglei, Mi Qingru, et al. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33: 034007. doi: 10.11884/HPLPB202133.200318

Application of machine learning in orbital correction of storage ring

doi: 10.11884/HPLPB202133.200318
  • Received Date: 2020-11-23
  • Rev Recd Date: 2021-01-19
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • Synchrotron light source is one of the most powerful tools in modern science and technology. Shanghai Synchrotron Radiation Facility (SSRF), located in Shanghai, China, is an advanced 3.5 GeV 3rd-generation medium energy light source. The 3rd-generation synchrotron radiation light source will provide high brilliance and high stability synchrotron radiation to fulfill the advanced experimental conditions in frontier researches. To achieve highly stable radiation, it is important to have highly stable beam orbit. Thus we adopted machine learning method to control and feedback the orbit. Using this neural network-based orbit correction method, which doesn’t rely on the response matrix, we can establish a nonlinear mapping relationship between correctors and the orbit distortions and perform continuous online retraining. This new method can significantly improve the orbit stability of SSRF.
  • [1]
    Jiang Bocheng, Liu Guimin, Zhao Zhentang. Simulation of a transverse feedback system for the SSRF storage ring[J]. High Energy Physics and Nuclear Physics, 2007, 31(10): 956-961.
    [2]
    Jiang Bocheng, Lin Guoqiang, Wang Baoliang, et al. Multi-bunch injection for SSRF storage ring[J]. Nuclear Science and Techniques, 2015, 26: 050101.
    [3]
    Zhang Q, Jiang B C, Tian S Q, et al. Study on beam dynamics of a Knot-APPLE undulator proposed for SSRF[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1669-1671.
    [4]
    Jiang Bocheng, Zhao Zhentang, Liu Guimin. Study of Touschek lifetime in SSRF storage ring[J]. High Energy Physics and Nuclear Physics, 2006, 30(7): 693-698.
    [5]
    Jiang Bocheng, Xia Guoxing, Han Lifeng, et al. Investigation of fast ion instability in SSRF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 614(3): 331-334.
    [6]
    卜令山, 赵振堂, 殷立新, 等. 第三代同步辐射光源储存环支撑组件振动控制研究[J]. 中国物理C, 2008, 32(s1):37-39. (Bu Lingshan, Zhao Zhentang, Yin Lixin, et al. Vibration control research for the 3rd generation synchrotron light source storage ring mechanical components[J]. Chinese Physics C, 2008, 32(s1): 37-39
    [7]
    Zhao Z T, Xu H J, Ding H. Commissioning of the Shanghai Light Source[J]. Energy, 2015, 3: 3-51.
    [8]
    Nagaoka R, Bocchetta C J, Iazzourene F, et al. Orbit correction in ELETTRA[C]//Proc 4th EPAC. 1994: 1009.
    [9]
    Tsai HJ, Chang H P, Chou P J, et al. Closed orbit correction of TPS storage ring[C]//Proceedings of EPAC 2006.2006: 2029-2031.
    [10]
    Li Jingyi, Liu Gongfa, Li Weimin, et al. Closed orbit correction of HLS storage ring[C]//Proceedings of the 2001 Particle Accelerator Conference. Chicago: IEEE, 2001: 1255-1257.
    [11]
    Wang Faya, Song Minghao, Edelen A, et al. Machine learning for design optimization of storage ring nonlinear dynamics[DB/OL]. arXiv preprint arXiv: 1910.14220, 2019.
    [12]
    Leemann S C, Liu S, Hexemer A, et al. Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources[J]. Physical Review Letters, 2019, 123: 194801. doi: 10.1103/PhysRevLett.123.194801
    [13]
    刘祖平. 同步辐射光源物理引论[M]. 合肥: 中国科学技术大学出版社, 2009: 161-196.

    Liu Zhuping. Introduction to physics of synchrotron radiation source[M]. Hefei: University of Science and Technology of China Press, 2009: 161-196).
    [14]
    Chung Y, Decker G, Evans K, et al. Global DC closed orbit correction experiments on the NSLS X-ray ring and SPEAR[C]//Proceedings of International Conference on Particle Accelerators. Washington: IEEE, 1993: 2275-2277.
    [15]
    LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [16]
    陈亚秋, 陈德钊, 胡上序, 等. 多层前传神经网的广义误差反传训练与模式分类[J]. 模式识别与人工智能, 1996, 9(2):161-165. (Chen Yaqiu, Chen Dezhao, Hu Shangxu, et al. Generalized error back-propagation training for multi-layered feedforward neural nets[J]. Pattern Recognition and Artificial Intelligence, 1996, 9(2): 161-165
    [17]
    LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
    [18]
    Ruder S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv: 1609.04747, 2016.
    [19]
    Chollet F, Others. Keras: the python deep learning library[J]. Astrophysics Source Code Library, 2018, 1806: 1022.
    [20]
    Abadi M, Barham P, Chen Jianmin, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. 2016: 265-283.
    [21]
    Dean J, Corrado G S, Monga R, et al. Large scale distributed deep networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 1223-1231.
    [22]
    Zhang Chiyuan, Liao Qianli, Rakhlin A, et al. Theory of deep learning IIb: optimization properties of SGD[DB/OL]. arXiv preprint arXiv: 1801.02254, 2018.
    [23]
    Bottou L, Curtis F E, Nocedal J. Optimization methods for large-scale machine learning[J]. SIAM Review, 2016, 60(2): 223-311.
    [24]
    Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. 2010: 807-814.
    [25]
    Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.
    [26]
    Nowlan S J, Hinton G E. Simplifying neural networks by soft weight-sharing[J]. Neural Computation, 1992, 4(4): 473-493. doi: 10.1162/neco.1992.4.4.473
  • Relative Articles

    [1]Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478
    [2]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [3]Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143
    [4]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [5]Shi Tao, Ma Jimin, Qiu Youheng, Huang Hongwen, Li Zhenghong, Qian Dazhi. Global variance reduction based on forward Monte Carlo calculation[J]. High Power Laser and Particle Beams, 2018, 30(1): 016006. doi: 10.11884/HPLPB201830.170163
    [6]Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481
    [7]Lü Wenhui, Guo Huiping, Lü Ning, Hou Yijie, Wang Xiaotian, Zhao Kuo, Tian Chenyang. Design of alignment and shielding structure for small D-D neutron tube with 2.45 MeV neutron source[J]. High Power Laser and Particle Beams, 2017, 29(12): 126008. doi: 10.11884/HPLPB201729.170225
    [8]Dong Xiaoxia, Liu Qiang, Zhao Xiang, Yan Liping, Zhou Haijing, Huang Kama. Boundary condition in analysis of high-frequency electromagnetic field coupling to non-uniform multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2017, 29(09): 093201. doi: 10.11884/HPLPB201729.170058
    [9]Yexin Ouwen, Liu Shichang, Wang Kan. Research on RMC neutronics-thermal hydraulics coupling based on universal coupling methodology[J]. High Power Laser and Particle Beams, 2017, 29(01): 016003. doi: 10.11884/HPLPB201729.160190
    [10]Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029
    [11]Xu Yang, Wei Biao, Mao Benjiang, Liu Yixin, Feng Peng. Shielding research of minitype reference radiation device based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2016, 28(09): 096004. doi: 10.11884/HPLPB201628.160018
    [12]Sun Jialong, Yu Ganglin, She Ding, Wang Kan. Development of repeat geometry function in reactor Monte Carlo code RMC[J]. High Power Laser and Particle Beams, 2013, 25(01): 219-222. doi: 10.3788/HPLPB20132501.0219
    [13]Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189
    [14]Yu Hui, Zin Cho. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels[J]. High Power Laser and Particle Beams, 2013, 25(01): 143-146. doi: 10.3788/HPLPB20132501.0143
    [15]Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211
    [16]Xiao Bo, Huang Jiaofeng, Zhang Xuan, Jing Yuefeng. "Measurement” of parameters in discrete program using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2013, 25(01): 138-142. doi: 10.3788/HPLPB20132501.0138
    [17]Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2975-2978. doi: 10.3788/HPLPB20122412.2975
    [18]Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965
    [19]luan xiting, deng yongfeng, tan chang, han xianwei, mao genwang. Properties of electron-beam produced air plasma in nonuniform magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [20]pan ruzheng, wang jue, yan ping, sun guangsheng, zhang dongdong, zhou yuan, li mintang. Monte Carlo simulation of laser-triggered flashover in air condition[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
  • Cited by

    Periodical cited type(7)

    1. 李雪宾,张鑫,简家文. 带有温度补偿的高灵敏度光纤布喇格光栅水听器. 光通信技术. 2020(04): 26-29 .
    2. 王小羊. 光栅常数测定方法探讨. 电大理工. 2018(01): 1-2+8 .
    3. 郭瑜,朱星盈,倪屹,王娟,李岱林. 三维光纤布拉格光栅应变传感器的温度补偿技术. 激光与光电子学进展. 2018(05): 82-87 .
    4. 孙诗晴,初凤红,卢家焱. 光纤布拉格光栅传感器交叉敏感问题的研究进展. 激光与光电子学进展. 2017(04): 82-91 .
    5. 赵亚丽,李玉华,张春青. 基于DWDM与MATLAB的光纤光栅压力传感解调系统的研究. 承德石油高等专科学校学报. 2016(06): 54-56+84 .
    6. 巩鑫,华灯鑫,李仕春,王骏,代晨昱. 时分复用光纤光栅系统的边缘滤波解调与标定. 中国激光. 2016(10): 244-252 .
    7. 姜学鹏,陈姝,周健. 风载环境下隧道光纤光栅火灾探测器响应和报警特性. 隧道建设. 2016(10): 1202-1206 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 71.5 %META: 71.5 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.9 %其他: 2.9 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.3 %[]: 0.3 %上海: 0.7 %上海: 0.7 %上饶: 0.2 %上饶: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %北京: 18.4 %北京: 18.4 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.2 %大连: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 1.0 %张家口: 1.0 %成都: 0.1 %成都: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.5 %深圳: 0.5 %湖州: 0.1 %湖州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %芝加哥: 0.6 %芝加哥: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 56.8 %西宁: 56.8 %西安: 0.1 %西安: 0.1 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.2 %郑州: 0.2 %重庆: 0.2 %重庆: 0.2 %长治: 0.1 %长治: 0.1 %其他ChinaIndiaKorea Republic ofSeattle[]上海上饶中山临汾丹东丽水北京台州合肥哥伦布大连广州张家口成都晋城普洱杭州桃园武汉沈阳济南深圳湖州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安达尔斯运城郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1838) PDF downloads(203) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return