Fan Mengqiu, Lin Shengtao, Wu han, et al. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306
Citation: Li Ruichun, Zhang Qinglei, Mi Qingru, et al. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33: 034007. doi: 10.11884/HPLPB202133.200318

Application of machine learning in orbital correction of storage ring

doi: 10.11884/HPLPB202133.200318
  • Received Date: 2020-11-23
  • Rev Recd Date: 2021-01-19
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • Synchrotron light source is one of the most powerful tools in modern science and technology. Shanghai Synchrotron Radiation Facility (SSRF), located in Shanghai, China, is an advanced 3.5 GeV 3rd-generation medium energy light source. The 3rd-generation synchrotron radiation light source will provide high brilliance and high stability synchrotron radiation to fulfill the advanced experimental conditions in frontier researches. To achieve highly stable radiation, it is important to have highly stable beam orbit. Thus we adopted machine learning method to control and feedback the orbit. Using this neural network-based orbit correction method, which doesn’t rely on the response matrix, we can establish a nonlinear mapping relationship between correctors and the orbit distortions and perform continuous online retraining. This new method can significantly improve the orbit stability of SSRF.
  • [1]
    Jiang Bocheng, Liu Guimin, Zhao Zhentang. Simulation of a transverse feedback system for the SSRF storage ring[J]. High Energy Physics and Nuclear Physics, 2007, 31(10): 956-961.
    [2]
    Jiang Bocheng, Lin Guoqiang, Wang Baoliang, et al. Multi-bunch injection for SSRF storage ring[J]. Nuclear Science and Techniques, 2015, 26: 050101.
    [3]
    Zhang Q, Jiang B C, Tian S Q, et al. Study on beam dynamics of a Knot-APPLE undulator proposed for SSRF[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1669-1671.
    [4]
    Jiang Bocheng, Zhao Zhentang, Liu Guimin. Study of Touschek lifetime in SSRF storage ring[J]. High Energy Physics and Nuclear Physics, 2006, 30(7): 693-698.
    [5]
    Jiang Bocheng, Xia Guoxing, Han Lifeng, et al. Investigation of fast ion instability in SSRF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 614(3): 331-334.
    [6]
    卜令山, 赵振堂, 殷立新, 等. 第三代同步辐射光源储存环支撑组件振动控制研究[J]. 中国物理C, 2008, 32(s1):37-39. (Bu Lingshan, Zhao Zhentang, Yin Lixin, et al. Vibration control research for the 3rd generation synchrotron light source storage ring mechanical components[J]. Chinese Physics C, 2008, 32(s1): 37-39
    [7]
    Zhao Z T, Xu H J, Ding H. Commissioning of the Shanghai Light Source[J]. Energy, 2015, 3: 3-51.
    [8]
    Nagaoka R, Bocchetta C J, Iazzourene F, et al. Orbit correction in ELETTRA[C]//Proc 4th EPAC. 1994: 1009.
    [9]
    Tsai HJ, Chang H P, Chou P J, et al. Closed orbit correction of TPS storage ring[C]//Proceedings of EPAC 2006.2006: 2029-2031.
    [10]
    Li Jingyi, Liu Gongfa, Li Weimin, et al. Closed orbit correction of HLS storage ring[C]//Proceedings of the 2001 Particle Accelerator Conference. Chicago: IEEE, 2001: 1255-1257.
    [11]
    Wang Faya, Song Minghao, Edelen A, et al. Machine learning for design optimization of storage ring nonlinear dynamics[DB/OL]. arXiv preprint arXiv: 1910.14220, 2019.
    [12]
    Leemann S C, Liu S, Hexemer A, et al. Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources[J]. Physical Review Letters, 2019, 123: 194801. doi: 10.1103/PhysRevLett.123.194801
    [13]
    刘祖平. 同步辐射光源物理引论[M]. 合肥: 中国科学技术大学出版社, 2009: 161-196.

    Liu Zhuping. Introduction to physics of synchrotron radiation source[M]. Hefei: University of Science and Technology of China Press, 2009: 161-196).
    [14]
    Chung Y, Decker G, Evans K, et al. Global DC closed orbit correction experiments on the NSLS X-ray ring and SPEAR[C]//Proceedings of International Conference on Particle Accelerators. Washington: IEEE, 1993: 2275-2277.
    [15]
    LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [16]
    陈亚秋, 陈德钊, 胡上序, 等. 多层前传神经网的广义误差反传训练与模式分类[J]. 模式识别与人工智能, 1996, 9(2):161-165. (Chen Yaqiu, Chen Dezhao, Hu Shangxu, et al. Generalized error back-propagation training for multi-layered feedforward neural nets[J]. Pattern Recognition and Artificial Intelligence, 1996, 9(2): 161-165
    [17]
    LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
    [18]
    Ruder S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv: 1609.04747, 2016.
    [19]
    Chollet F, Others. Keras: the python deep learning library[J]. Astrophysics Source Code Library, 2018, 1806: 1022.
    [20]
    Abadi M, Barham P, Chen Jianmin, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. 2016: 265-283.
    [21]
    Dean J, Corrado G S, Monga R, et al. Large scale distributed deep networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 1223-1231.
    [22]
    Zhang Chiyuan, Liao Qianli, Rakhlin A, et al. Theory of deep learning IIb: optimization properties of SGD[DB/OL]. arXiv preprint arXiv: 1801.02254, 2018.
    [23]
    Bottou L, Curtis F E, Nocedal J. Optimization methods for large-scale machine learning[J]. SIAM Review, 2016, 60(2): 223-311.
    [24]
    Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. 2010: 807-814.
    [25]
    Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.
    [26]
    Nowlan S J, Hinton G E. Simplifying neural networks by soft weight-sharing[J]. Neural Computation, 1992, 4(4): 473-493. doi: 10.1162/neco.1992.4.4.473
  • Relative Articles

    [1]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [2]Zheng Wanguo, Tian Ye, Han Wei, Chai Xiangxu, Deng Xuewei, Liu Taixiang, Liao Wei. Research progress on loading capability of high-power solid-state laser facilities[J]. High Power Laser and Particle Beams, 2023, 35(6): 061001. doi: 10.11884/HPLPB202335.220402
    [3]Zong Zhaoyu, Zhao Junpu, Li Sen, Liang Yue, Yao Ke, Tian Xiaocheng, Huang Xiaoxia, Chen Bo, Zheng Wanguo. Precise laser pulse shaping technology and application with high energy stability[J]. High Power Laser and Particle Beams, 2022, 34(3): 031011. doi: 10.11884/HPLPB202234.210288
    [4]Liu Lei, Wang Wentao, Wang Chao, Wang Gang, Liu Yang, Jia Youquan, Li Ning, Lv Kunpeng, Chen Lu. High power solid state laser operating in continuous / pulse composite mode[J]. High Power Laser and Particle Beams, 2022, 34(3): 031007. doi: 10.11884/HPLPB202234.210292
    [5]Guo Huaiwen, Zhou Wei, Ye Lang, Du Weifeng, Tan ning, Deng Xuewei, Huang Xiaoxia, Zhao Bowang, Zhong Wei, Wang Fang. Effect of crystals’ surface shape distortion on conversion efficiency of third harmonic generation[J]. High Power Laser and Particle Beams, 2020, 32(6): 061002. doi: 10.11884/HPLPB202032.200046
    [6]Zheng Wanguo, Li Ping, Zhang Rui, Zhang Ying, Deng Xuewei, Xu Dangpeng, Huang Xiaoxia, Wang Fang, Zhao Junpu, Han Wei. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011003. doi: 10.11884/HPLPB202032.190469
    [7]Shi Yiping, Fan Yajun, Yi Chaolong, Zhu Sitao, Xia Wenfeng. Analysis of aperture antenna radiation characteristics fed by impulse signal on time domain[J]. High Power Laser and Particle Beams, 2016, 28(09): 093001. doi: 10.11884/HPLPB201628.151272
    [8]Chen Haiyan, Xiong Xiangzheng, Chen Kaiya, Liao Cheng. Simplified method for fast calculating time-domain radiation field of pulsed antenna arrays[J]. High Power Laser and Particle Beams, 2016, 28(08): 085003. doi: 10.11884/HPLPB201628.151295
    [9]Jia Rui, Zeng Yonghu, Wang Chuanchuan. Uniformity of electromagnetic field in a pulse excited reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27(10): 103220. doi: 10.11884/HPLPB201527.103220
    [10]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, He Qun, Zhou Hai, Zheng Wanguo, Zhou Guorui. Contamination in beampath and laser induced damage of optics in high power laser system[J]. High Power Laser and Particle Beams, 2015, 27(03): 032033. doi: 10.11884/HPLPB201527.032033
    [11]Shi Lihua, Zhang Qi, Zhou Yinghui, Zhou Bihua. Reduced model for disturbance analysis of cable bundles[J]. High Power Laser and Particle Beams, 2013, 25(02): 531-536. doi: 10.3788/HPLPB20132502.0531
    [12]Zeng Peiying, Tang Xiaoyun, Yang Xuedong, Ji Tong, Jiang Minhua, Zhu Baoqiang, Zhu Jianqiang, Liu Dekang, Shen Liren. Design of Shenguang-Ⅱ facility centralized control system[J]. High Power Laser and Particle Beams, 2012, 24(11): 2595-2598. doi: 10.3788/HPLPB20122411.2595
    [13]li hai, liang yue, zhao runchang, li ping. Waveform control technique of high power laser pulse shaping[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [14]wang bin, zhang tao, yang pengqian, wang yong, zhu jianqiang. Piezoelectric stepper actuator in high power laser facility[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [15]yu ying, zhao feng, li wenbo, zhang lin, yuan xiaodong. Measurement and analysis of airborne molecular contaminants in high power laser facility[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [16]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]liu hong-jie, jing feng, zuo yan-lei, wei xiao-feng, hu dong-xia, peng zhi-tao, li qiang, zhou wei, zhang kun, jiang lei, li zhi-jun, zuo ming. Nonlinear propagation of localized wavefront deformation in high-power laser facility[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [18]yang jing, zhang xiao-min, wang wen-yi, su jing-qin, jing feng, hu dong-xia, yuan jing, shi zhi-quan, zhang rui. Improving output capability of high-power laser at short pulse duration using different laser glasses together in amplifier[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [19]yang jing, zhang xiao-min, hu dong-xia, su jing-qin, wang wen-yi, yuan jing, shi zhi-quan, xu lan, . Comprehensive evaluation for system design of high- power laser facility[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [20]lin zun-qi, wang shi-ji, fan dian-yuan, gu yuan, zheng zhi-jian, zhu jian-qiang, zhu jian, cai xi-jie, huang guan-long, dai ya-ping, yang yi. Successful operation of 8 beam SG-Ⅱlaserfacility for both 1w 0 and 3w 0 output[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(3)

    1. Shengtao LIN,Zinan WANG,Jiaojiao ZHANG,Pan WANG,Han WU,Yifei QI. Radiation build-up and dissipation in Raman random fiber laser. Science China(Information Sciences). 2024(01): 254-260 .
    2. 马小雅,叶俊,梁峻锐,何俊鸿,张扬,许将明,周朴,姜宗福. 基于随机光纤激光器的多奇点涡旋光束. 光学学报. 2024(10): 401-411 .
    3. 杨茜,周泽中,张祖兴. 频率间隔可切换多波长随机光纤激光器. 光子学报. 2022(12): 64-71 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 69.5 %META: 69.5 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %其他: 0.5 %其他: 0.5 %Canada: 0.4 %Canada: 0.4 %China: 0.7 %China: 0.7 %Edinburg: 0.0 %Edinburg: 0.0 %Germany: 0.2 %Germany: 0.2 %India: 0.3 %India: 0.3 %Indianapolis: 0.2 %Indianapolis: 0.2 %Jaipur: 0.3 %Jaipur: 0.3 %Mexico: 0.1 %Mexico: 0.1 %Pakistan: 0.1 %Pakistan: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Russian Federation: 0.5 %Russian Federation: 0.5 %Spain: 0.5 %Spain: 0.5 %United States: 0.3 %United States: 0.3 %[]: 0.3 %[]: 0.3 %上海: 4.0 %上海: 4.0 %东莞: 0.7 %东莞: 0.7 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %伯克利: 0.1 %伯克利: 0.1 %保定: 0.4 %保定: 0.4 %信阳: 0.1 %信阳: 0.1 %兰州: 0.0 %兰州: 0.0 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %北京: 6.3 %北京: 6.3 %北海: 0.0 %北海: 0.0 %十堰: 0.3 %十堰: 0.3 %南京: 0.2 %南京: 0.2 %南昌: 0.0 %南昌: 0.0 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.6 %合肥: 0.6 %吉隆坡: 0.1 %吉隆坡: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣塞瓦斯蒂安德洛斯雷埃斯: 0.2 %圣塞瓦斯蒂安德洛斯雷埃斯: 0.2 %天津: 0.8 %天津: 0.8 %太原: 0.3 %太原: 0.3 %孟买: 0.1 %孟买: 0.1 %宁波: 0.2 %宁波: 0.2 %安德森: 0.0 %安德森: 0.0 %宜春: 0.2 %宜春: 0.2 %宣城: 0.3 %宣城: 0.3 %川崎: 0.1 %川崎: 0.1 %巴格达: 0.1 %巴格达: 0.1 %常州: 0.0 %常州: 0.0 %常德: 0.0 %常德: 0.0 %广州: 1.0 %广州: 1.0 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.3 %张家口: 0.3 %张家界: 0.3 %张家界: 0.3 %怀化: 0.0 %怀化: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 5.7 %成都: 5.7 %扬州: 0.2 %扬州: 0.2 %斯特拉斯堡: 0.1 %斯特拉斯堡: 0.1 %新乡: 0.0 %新乡: 0.0 %新奥尔良: 0.0 %新奥尔良: 0.0 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.9 %杭州: 0.9 %桂林: 0.2 %桂林: 0.2 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 2.7 %深圳: 2.7 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.8 %漯河: 0.8 %潘普洛纳: 0.2 %潘普洛纳: 0.2 %烟台: 0.0 %烟台: 0.0 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.6 %福州: 0.6 %秦皇岛: 0.4 %秦皇岛: 0.4 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.3 %莫斯科: 0.3 %菏泽: 0.1 %菏泽: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.3 %西宁: 32.3 %西安: 0.6 %西安: 0.6 %西雅图: 0.0 %西雅图: 0.0 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.6 %郑州: 1.6 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %锦州: 0.0 %锦州: 0.0 %长春: 0.6 %长春: 0.6 %长沙: 1.9 %长沙: 1.9 %长治: 0.1 %长治: 0.1 %雪兰莪: 0.1 %雪兰莪: 0.1 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.0 %马鞍山: 0.0 %其他其他CanadaChinaEdinburgGermanyIndiaIndianapolisJaipurMexicoPakistanRochesterRussian FederationSpainUnited States[]上海东莞中卫中山临汾丹东丽水伊利诺伊州伯克利保定信阳兰州内江加利福尼亚州北京北海十堰南京南昌厦门台州合肥吉隆坡哈尔滨哥伦布嘉兴圣塞瓦斯蒂安德洛斯雷埃斯天津太原孟买宁波安德森宜春宣城川崎巴格达常州常德广州库比蒂诺廊坊张家口张家界怀化惠州成都扬州斯特拉斯堡新乡新奥尔良昆明晋城普洱杭州桂林榆林武汉汕头沈阳洛杉矶洛阳济南深圳温州湖州湘潭漯河潘普洛纳烟台盐城石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州莫斯科菏泽衡阳衢州襄阳西宁西安西雅图贵阳费利蒙运城邯郸郑州鄂州重庆金华锦州长春长沙长治雪兰莪青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1828) PDF downloads(199) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return