Citation: | Li Ruichun, Zhang Qinglei, Mi Qingru, et al. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33: 034007. doi: 10.11884/HPLPB202133.200318 |
[1] |
Jiang Bocheng, Liu Guimin, Zhao Zhentang. Simulation of a transverse feedback system for the SSRF storage ring[J]. High Energy Physics and Nuclear Physics, 2007, 31(10): 956-961.
|
[2] |
Jiang Bocheng, Lin Guoqiang, Wang Baoliang, et al. Multi-bunch injection for SSRF storage ring[J]. Nuclear Science and Techniques, 2015, 26: 050101.
|
[3] |
Zhang Q, Jiang B C, Tian S Q, et al. Study on beam dynamics of a Knot-APPLE undulator proposed for SSRF[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1669-1671.
|
[4] |
Jiang Bocheng, Zhao Zhentang, Liu Guimin. Study of Touschek lifetime in SSRF storage ring[J]. High Energy Physics and Nuclear Physics, 2006, 30(7): 693-698.
|
[5] |
Jiang Bocheng, Xia Guoxing, Han Lifeng, et al. Investigation of fast ion instability in SSRF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 614(3): 331-334.
|
[6] |
卜令山, 赵振堂, 殷立新, 等. 第三代同步辐射光源储存环支撑组件振动控制研究[J]. 中国物理C, 2008, 32(s1):37-39. (Bu Lingshan, Zhao Zhentang, Yin Lixin, et al. Vibration control research for the 3rd generation synchrotron light source storage ring mechanical components[J]. Chinese Physics C, 2008, 32(s1): 37-39
|
[7] |
Zhao Z T, Xu H J, Ding H. Commissioning of the Shanghai Light Source[J]. Energy, 2015, 3: 3-51.
|
[8] |
Nagaoka R, Bocchetta C J, Iazzourene F, et al. Orbit correction in ELETTRA[C]//Proc 4th EPAC. 1994: 1009.
|
[9] |
Tsai HJ, Chang H P, Chou P J, et al. Closed orbit correction of TPS storage ring[C]//Proceedings of EPAC 2006.2006: 2029-2031.
|
[10] |
Li Jingyi, Liu Gongfa, Li Weimin, et al. Closed orbit correction of HLS storage ring[C]//Proceedings of the 2001 Particle Accelerator Conference. Chicago: IEEE, 2001: 1255-1257.
|
[11] |
Wang Faya, Song Minghao, Edelen A, et al. Machine learning for design optimization of storage ring nonlinear dynamics[DB/OL]. arXiv preprint arXiv: 1910.14220, 2019.
|
[12] |
Leemann S C, Liu S, Hexemer A, et al. Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources[J]. Physical Review Letters, 2019, 123: 194801. doi: 10.1103/PhysRevLett.123.194801
|
[13] |
刘祖平. 同步辐射光源物理引论[M]. 合肥: 中国科学技术大学出版社, 2009: 161-196.
Liu Zhuping. Introduction to physics of synchrotron radiation source[M]. Hefei: University of Science and Technology of China Press, 2009: 161-196).
|
[14] |
Chung Y, Decker G, Evans K, et al. Global DC closed orbit correction experiments on the NSLS X-ray ring and SPEAR[C]//Proceedings of International Conference on Particle Accelerators. Washington: IEEE, 1993: 2275-2277.
|
[15] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
[16] |
陈亚秋, 陈德钊, 胡上序, 等. 多层前传神经网的广义误差反传训练与模式分类[J]. 模式识别与人工智能, 1996, 9(2):161-165. (Chen Yaqiu, Chen Dezhao, Hu Shangxu, et al. Generalized error back-propagation training for multi-layered feedforward neural nets[J]. Pattern Recognition and Artificial Intelligence, 1996, 9(2): 161-165
|
[17] |
LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
|
[18] |
Ruder S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv: 1609.04747, 2016.
|
[19] |
Chollet F, Others. Keras: the python deep learning library[J]. Astrophysics Source Code Library, 2018, 1806: 1022.
|
[20] |
Abadi M, Barham P, Chen Jianmin, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. 2016: 265-283.
|
[21] |
Dean J, Corrado G S, Monga R, et al. Large scale distributed deep networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 1223-1231.
|
[22] |
Zhang Chiyuan, Liao Qianli, Rakhlin A, et al. Theory of deep learning IIb: optimization properties of SGD[DB/OL]. arXiv preprint arXiv: 1801.02254, 2018.
|
[23] |
Bottou L, Curtis F E, Nocedal J. Optimization methods for large-scale machine learning[J]. SIAM Review, 2016, 60(2): 223-311.
|
[24] |
Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. 2010: 807-814.
|
[25] |
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.
|
[26] |
Nowlan S J, Hinton G E. Simplifying neural networks by soft weight-sharing[J]. Neural Computation, 1992, 4(4): 473-493. doi: 10.1162/neco.1992.4.4.473
|
[1] | Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478 |
[2] | He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273 |
[3] | Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143 |
[4] | Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222 |
[5] | Shi Tao, Ma Jimin, Qiu Youheng, Huang Hongwen, Li Zhenghong, Qian Dazhi. Global variance reduction based on forward Monte Carlo calculation[J]. High Power Laser and Particle Beams, 2018, 30(1): 016006. doi: 10.11884/HPLPB201830.170163 |
[6] | Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481 |
[7] | Lü Wenhui, Guo Huiping, Lü Ning, Hou Yijie, Wang Xiaotian, Zhao Kuo, Tian Chenyang. Design of alignment and shielding structure for small D-D neutron tube with 2.45 MeV neutron source[J]. High Power Laser and Particle Beams, 2017, 29(12): 126008. doi: 10.11884/HPLPB201729.170225 |
[8] | Dong Xiaoxia, Liu Qiang, Zhao Xiang, Yan Liping, Zhou Haijing, Huang Kama. Boundary condition in analysis of high-frequency electromagnetic field coupling to non-uniform multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2017, 29(09): 093201. doi: 10.11884/HPLPB201729.170058 |
[9] | Yexin Ouwen, Liu Shichang, Wang Kan. Research on RMC neutronics-thermal hydraulics coupling based on universal coupling methodology[J]. High Power Laser and Particle Beams, 2017, 29(01): 016003. doi: 10.11884/HPLPB201729.160190 |
[10] | Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029 |
[11] | Xu Yang, Wei Biao, Mao Benjiang, Liu Yixin, Feng Peng. Shielding research of minitype reference radiation device based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2016, 28(09): 096004. doi: 10.11884/HPLPB201628.160018 |
[12] | Sun Jialong, Yu Ganglin, She Ding, Wang Kan. Development of repeat geometry function in reactor Monte Carlo code RMC[J]. High Power Laser and Particle Beams, 2013, 25(01): 219-222. doi: 10.3788/HPLPB20132501.0219 |
[13] | Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189 |
[14] | Yu Hui, Zin Cho. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels[J]. High Power Laser and Particle Beams, 2013, 25(01): 143-146. doi: 10.3788/HPLPB20132501.0143 |
[15] | Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211 |
[16] | Xiao Bo, Huang Jiaofeng, Zhang Xuan, Jing Yuefeng. "Measurement” of parameters in discrete program using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2013, 25(01): 138-142. doi: 10.3788/HPLPB20132501.0138 |
[17] | Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2975-2978. doi: 10.3788/HPLPB20122412.2975 |
[18] | Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965 |
[19] | luan xiting, deng yongfeng, tan chang, han xianwei, mao genwang. Properties of electron-beam produced air plasma in nonuniform magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[20] | pan ruzheng, wang jue, yan ping, sun guangsheng, zhang dongdong, zhou yuan, li mintang. Monte Carlo simulation of laser-triggered flashover in air condition[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- . |