Citation: | Lin Mao, Xu Haojun, Wei Xiaolong, et al. Attenuation characteristics of electromagnetic wave in inductive coupled plasma based on variation of discharge power[J]. High Power Laser and Particle Beams, 2021, 33: 065012. doi: 10.11884/HPLPB202133.200320 |
[1] |
Xu Shuyan, Ostrikov K N, Li Y, et al. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications[J]. Physics of Plasmas, 2001, 8(5): 2549-2557. doi: 10.1063/1.1343887
|
[2] |
Godyak V A, Alexandrovich B M. Plasma and electrical characteristics of inductive discharge in a magnetic field[J]. Physics of Plasmas, 2004, 11(7): 3553-3560. doi: 10.1063/1.1758946
|
[3] |
戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
|
[4] |
朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16):3504-3511. (Zhu Han, He Xiang, Chen Bingyan, et al. Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511
|
[5] |
Lee H C, Chung C W. E-H heating mode transition in inductive discharges with different antenna sizes[J]. Physics of Plasmas, 2015, 22: 053505. doi: 10.1063/1.4916044
|
[6] |
Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607. doi: 10.1063/1.4823470
|
[7] |
Jun H S, Chang H Y. Development of 40 MHz inductively coupled plasma source and frequency effects on plasma parameters[J]. Appl Phys Lett, 2008, 92: 041501. doi: 10.1063/1.2838306
|
[8] |
Ventzek P L G, Hoekstra R J, Kushner M J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1994, 12(1): 461-477.
|
[9] |
Fukasawa T, Nouda T, Nakamura A, et al. RF self-bias characteristics in inductively coupled plasma[J]. Japanese Journal of Applied Physics, 1993, 32: 6076. doi: 10.1143/JJAP.32.6076
|
[10] |
Amorim J, Maciel H S, Sudano J P. High-density plasma mode of an inductively coupled radio frequency discharge[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991, 9(2): 362-365.
|
[11] |
张改玲, 滑跃, 郝泽宇, 等. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究[J]. 物理学报, 2019, 68:105202. (Zhang Gailing, Hua Yue, Hao Zeyu, et al. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68: 105202 doi: 10.7498/aps.68.20190071
|
[12] |
张昀, 王波, 王荷军. 射频感应耦合等离子体朗缪双探针诊断分析[J]. 真空, 2016, 53(3):56-61. (Zhang Yun, Wang Bo, Wang Hejun. Langmuir double probe diagnostic analysis of RF inductively coupled plasma[J]. Vacuum, 2016, 53(3): 56-61
|
[13] |
王荷军, 王波, 刘云辉, 等. 放电参量对射频容性耦合等离子体电子密度的影响[J]. 真空, 2017, 54(4):26-30. (Wang Hejun, Wang Bo, Liu Yunhui, et al. Influence of discharge parameters on electron density of RF capacitively coupled plasma[J]. Vacuum, 2017, 54(4): 26-30
|
[14] |
Wen Deqi, Liu Wei, Gao Fei, et al. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon[J]. Plasma Sources Science and Technology, 2016, 25: 045009. doi: 10.1088/0963-0252/25/4/045009
|
[15] |
汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学, 2014.
Wang Jian. Experimental study on radio frequency inductively coupled plasmas and mode transition[D]. Hefei: University of Science and Technology of China, 2014).
|
[16] |
桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.
Sang Jianhua. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013).
|
[17] |
苏晨, 徐浩军, 林敏, 等. 封闭式等离子体发生器设计及其放电等离子体参数分布实验研究[J]. 高电压技术, 2013, 39(7):1668-1673. (Su Chen, Xu Haojun, Lin Min, et al. Design on closed plasma generator and experimental study on its plasma parameters distribution[J]. High Voltage Engineering, 2013, 39(7): 1668-1673 doi: 10.3969/j.issn.1003-6520.2013.07.019
|
[18] |
何湘. 飞机局部等离子体隐身探索研究[D]. 南京: 南京理工大学, 2010.
He Xiang. Studies on plasma stealth technique application in parts of plane[D]. Nanjing: Nanjing University of Science & Technology, 2010).
|
[19] |
赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29:053001. (Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column[J]. High Power Laser and Particle Beams, 2017, 29: 053001 doi: 10.11884/HPLPB201729.170043
|
[1] | Mao Chongyang, Xue Chuang, Xiao Delong, Ding Ning. Simulation method of quadruple-level circuit model for stack and vacuum section of Julong-I facility[J]. High Power Laser and Particle Beams, 2020, 32(2): 025004. doi: 10.11884/HPLPB202032.190330 |
[2] | Mao Chongyang, Xue Chuang, Xiao Delong, Wang Xiaoguang, Wang Guanqiong, Ding Ning. Full circuit simulation for influence of the laser-triggered gas switches' closing time on load current in PTS facility[J]. High Power Laser and Particle Beams, 2019, 31(1): 015001. doi: 10.11884/HPLPB201931.180256 |
[3] | Zhang Huang, Wang Yi, Li Tiantao, Yang Zhiyong, Li Qin, Jiang Wei, Li Yuan, Huang Ziping, Chen Sifu, Shi Jinshui, Zhang Linwen, Deng Jianjun. Beam load effect on the cavity voltage waveform in linear induction accelerators[J]. High Power Laser and Particle Beams, 2016, 28(01): 015101. doi: 10.11884/HPLPB201628.015101 |
[4] | Xue Chuang, Ding Ning, Zhang Yang, Xiao Delong, Sun Shunkai, Ning Cheng, Shu Xiaojian, . Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility[J]. High Power Laser and Particle Beams, 2016, 28(01): 015014. doi: 10.11884/HPLPB201628.015014 |
[5] | Xue Chuang, Ding Ning, Xiao Delong, Zhang Yang, Sun Shunkai, Ning Cheng, Shu Xiaojian. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser and Particle Beams, 2016, 28(12): 125004. doi: 10.11884/HPLPB201628.160138 |
[6] | Xia Minghe, Li Fengping, Ji Ce, Wei Bing, Feng Shuping, Wang Meng, Xie Weiping. Current pulse shaping of load on Primary Test Stand facility[J]. High Power Laser and Particle Beams, 2016, 28(05): 055003. doi: 10.11884/HPLPB201628.055003 |
[7] | Kan Mingxian, Zhang Zhaohui, Duan Shuchao, Wang Ganghua, Yang Long, Xiao Bo, Wang Guilin. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27(12): 125001. doi: 10.11884/HPLPB201527.125001 |
[8] | Wang Jie, Chen Lin, Guo Fan, Zhao Yue, Zhang Yuanjun, Li Ye, Wang Meng, Dai Yingmin. Shaping of output current rise time on 1 MA-LTD cavity[J]. High Power Laser and Particle Beams, 2014, 26(04): 045009. doi: 10.11884/HPLPB201426.045009 |
[9] | Guo Fan, Zou Wenkang, Chen Lin. Circuit simulation method for calculating vacuum power flow in magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2013, 25(07): 1845-1850. doi: 10.3788/HPLPB20132507.1845 |
[10] | Zou Wenkang, He Yong, Chen Lin, Zhou Liangji, Wang Meng, Xie Weiping, Deng Jianjun. Power flow computation with circuit for magnetically-insulated inductive voltage adder[J]. High Power Laser and Particle Beams, 2012, 24(05): 1211-1216. doi: 10.3788/HPLPB20122405.1211 |
[11] | Lai Dingguo, Xie Linshen. Application of Pspice subcircuit to circuit simulation of pulsed power device[J]. High Power Laser and Particle Beams, 2012, 24(03): 689-692. doi: 10.3788/HPLPB20122403.0689 |
[12] | He Yong, Zou Wenkang, ZHang Le, Song SHengyi. Circuit simulation and analysis of magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2012, 24(03): 581-586. doi: 10.3788/HPLPB20122403.0581 |
[13] | Xia Minghe, Ji Ce, Wang Yujuan, Wang Meng, Li Feng, Feng Shuping, Xie Weiping. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772. doi: 10.3788/HPLPB20122411.2768 |
[14] | zeng zhengzhong. Circuit simulation of exponential transmission line for petawatt Z-pinch plasma drivers[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- . |
[15] | zhou liangji, deng jianjun, chen lin, dai yingmin, wang meng, xie weiping, feng shuping, yang libing. Design of 1 MA linear transformer driver stage[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- . |
[16] | wang ganping, xiang fei, tan jie, luo min, kang qiang, cao shaoyun. Physical design and simulation of LTD-based source with long pulse and high power[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- . |
[17] | song sheng-yi, gu yuan-chao, guan yong-chao, zou wen-kang. Circuit simulation of magnetically insulated transmission line driving a wire array to implode[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- . |
[18] | zou wen-kang, zhou liang-ji, chen lin, deng jian-jun. Physical design and simulation for a 100 GW LTD system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- . |
[19] | zhou liang-ji, deng jian-jun, chen lin, xie wei-ping, feng shu-ping, guan yong-chao, wu shou-dong, ren jing, li ye. Influence of volt-second product of magnetic core on output of linear transformer driver[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- . |
[20] | song sheng-yi, qiu xu, wang wen-dou, xie wei-ping. Circuit model for magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- . |
1. | 张朝辉,王贵林,章征伟,郭帆,计策,傅贞,李勇. 10 MA多支路汇流装置上钽的强度实验研究. 强激光与粒子束. 2021(04): 121-129 . ![]() | |
2. | 毛重阳,薛创,肖德龙,丁宁. “聚龙一号”4层绝缘堆和真空区电路模拟方法. 强激光与粒子束. 2020(02): 24-28 . ![]() | |
3. | 王贵林,张朝辉,孙奇志,杨雯捷,计策,丰树平. 聚龙一号装置的强电磁干扰对PDV的影响研究. 强激光与粒子束. 2019(10): 99-103 . ![]() |