Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321
Citation: Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321

Numerical analysis of plasma and shock wave characteristics of the discharge in liquid

doi: 10.11884/HPLPB202133.200321
  • Received Date: 2020-11-26
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-06-23
  • Publish Date: 2021-07-15
  • Based on conservation equation of energy, channel characteristics of the cylindrical geometry of the plasma were described under different conductivity models. The variation of the channel radius, temperature, resistance, current and dissipated energy with time is obtained. The variation of shock wave pressure at a certain distance from the center of the discharge gap is also given. The results are compared with those calculated based on the spherical geometry of the plasma channel. The purpose of this paper is to provide a reference for further study of physical and chemical characteristics and shock wave characteristics of the discharge in liquid. The results show that there is significant difference in the channel pressure and radius when the plasma channel is respectively regarded as a sphere and a cylinder, but there is little difference in other physical properties. When the physical characteristics except the shock wave characteristic are described by using three conductivity models, the change trend is almost the same, while the shock wave characteristic is described more accurately by using the conductivity model σ2. By comparing the changes of electrical parameters and pressure parameters, the applicability of the model can be selected according to the experimental data or specific research problems, which also provides a reference for further study of the physicochemical characteristics and shock wave characteristics of discharge plasma in liquid.
  • [1]
    孙冰. 液相放电等离子体及其应用[M]. 北京: 科学出版社, 2013.

    Sun Bing. Discharge plasma in liquid and its application[M]. Beijing: Science Press, 2013
    [2]
    张辉, 蔡志翔, 陈安明, 等. 液相放电等离子体破岩室内实验与破岩机理[J]. 石油学报, 2020, 41(5):615-628. (Zhang Hui, Cai Zhixiang, Chen Anming, et al. Experiments and mechanism of rock breaking by the plasma shock wave generated by underwater discharge[J]. Acta Petrolei Sinica, 2020, 41(5): 615-628 doi: 10.7623/syxb202005010
    [3]
    刘云龙, 王志刚, 汪桐, 等. 等离子体协同絮凝降解乳化油废水COD的研究[J]. 安徽理工大学学报(自然科学版), 2019, 39(5):64-68. (Liu Yunlong, Wang Zhigang, Wang Tong, et al. Study on COD degradation of emulsified oil wastewater by plasma co-flocculation[J]. Journal of Anhui University of Science and Technology(Natural Science), 2019, 39(5): 64-68
    [4]
    陈景秋, 韦春霞, 邓艇, 等. 体外冲击波碎石技术的力学机理的研究[J]. 力学进展, 2007, 37(4):590-599. (Cheng Jingqiu, Wei Chunxia, Deng Ting, et al. Studies on mechanical mechanism about stone comminution and tissue trauma in extracorporeal shock wave lithotripsy[J]. Advances in Mechanics, 2007, 37(4): 590-599
    [5]
    左公宁. 水中脉冲电晕放电的某些特性[J]. 高电压技术, 2003, 29(8):37-38. (Zuo Gongning. Some properties of the impulse corona discharge in water[J]. High Voltage Engineering, 2003, 29(8): 37-38 doi: 10.3969/j.issn.1003-6520.2003.08.015
    [6]
    李宁, 雷开卓, 黄建国, 等. 采用时变电阻的水下高压放电模型[J]. 高电压技术, 2009, 35(12):3060-3064. (Li Ning, Lei Kaizhuo, Huang Jianguo, et al. Model of underwater high-voltage discharge using time-varying resistance[J]. High Voltage Engineering, 2009, 35(12): 3060-3064
    [7]
    Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011
    [8]
    李培芳, 金方勤. 液中放电冲击波和等离子体参数的计算[J]. 浙江大学学报(自然科学版), 1994(1):27-35. (Li Peifang, Jin Fangqin. Calculations of shock wave and plasma parameters of the discharge in liquid[J]. Journal of Zhejiang University(Natural Science), 1994(1): 27-35
    [9]
    蒋杰灵, 兰生, 杨嘉祥. 水中脉冲放电等离子体特性数值解析[J]. 哈尔滨理工大学学报, 2008(5):107-111. (Jiang Jieling, Lan Sheng, Yang Jiaxiang. Numerical analysis of the plasma characteristics of pulsed discharge in water[J]. Journal of Harbin University of Science and Technology, 2008(5): 107-111 doi: 10.3969/j.issn.1007-2683.2008.05.029
    [10]
    Cook J A, Gleeson A M, Roberts R M, et al. A spark-generated bubble model with semi-empirical mass transport[J]. The Journal of the Acoustical Society of America, 1997, 101(4): 1908-1920. doi: 10.1121/1.418236
    [11]
    Roberts R M, Cook J A, Rogers R L, et al. The energy partition of underwater sparks[J]. The Journal of the Acoustical Society of America, 1996, 99(6): 3465-3475. doi: 10.1121/1.414993
    [12]
    Eubank P T, Patel M R, Barrufet M A, et al. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model[J]. Journal of Applied Physics, 1993, 73(11): 7900-7909. doi: 10.1063/1.353942
    [13]
    Liu S W, Liu Y, Ren Y J, et al. Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26: 023522. doi: 10.1063/1.5064847
    [14]
    Fedorov V M. High power nanosecond discharge channel in water[M]. New York: Megagauss Fields and Pulsed Power Systems. 1990.
    [15]
    Ziman J M. Principles of the theory of solids[M]. Cambridge: Cambridge University Press, 1972.
    [16]
    Warne L K, Jorgenson R E, Lehr J M. Resistance of a water spark[R]. SAND2005-6994, 2005.
    [17]
    Liu S, Liu Y, Ren Y, et al. Characteristic analysis of plasma channel and shock wave in electrohydraulic pulsed discharge[J]. Physics of Plasmas, 2019, 26: 93509. doi: 10.1063/1.5092362
    [18]
    Spitzer L J Jr. Physics of fully ionized gases[J]. New York: John Wiley & Sons, 1962: 136-143.
    [19]
    Kratel A W H. Pulsed power discharges in water[D]. Pasadena: California Institute of Technology. 1996.
    [20]
    王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科学技术大学, 2012.

    Wang Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha: National University of Defense Technology, 2012
    [21]
    Braginskii S I. Theory of the development of a spark channel[J]. Soviet Phys JETP, 1958, 34 (6): 1068-1074.
    [22]
    Touya G, Reess T, Pecastaing L, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves[J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5236-5244. doi: 10.1088/0022-3727/39/24/021
  • Relative Articles

    [1]Wu Min’gan, Liu Yi, Lin Fuchang, Liu Siwei, Sun Jianjun. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32(4): 045002. doi: 10.11884/HPLPB202032.190356
    [2]Yu Liang, Sugai Taichi, Tokuchi Akira, Jiang Weihua. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30(2): 025006. doi: 10.11884/HPLPB201830.170390
    [3]Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(08): 082002. doi: 10.11884/HPLPB201729.170564
    [4]Jiang Weihua. Repetition rate pulsed power technology and its applications:(vii) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27(01): 010201. doi: 10.11884/HPLPB201527.010201
    [5]Jiang Weihua. Repetition rate pulsed power technology and its applications:(ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26(03): 030201. doi: 10.3788/HPLPB201426.030201
    [6]Jiang Weihua. Repetition rate pulsed power technology and its applications:(iv) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(03): 537-543. doi: 10.3788/HPLPB20132503.0537
    [7]Jiang Weihua. Repetition rate pulsed power technology and its applications:(Ⅴ) The implication of pulse adding[J]. High Power Laser and Particle Beams, 2013, 25(08): 1877-1882. doi: 10.3788/HPLPB20132508.1877
    [8]Chen Wen, Fan Chengyu, Wang Haitao, Zhang Pengfei, Zhang Jinghui, Qiao Chunhong, Ma Huimin. Numerical study on prolonging lifetime of plasma channels generated by ultra-short laser pulses[J]. High Power Laser and Particle Beams, 2013, 25(04): 813-816.
    [9]Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(01): 10-15.
    [10]Jiang Weihua. Repetition rate pulsed power technology and its applications: (iii) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(06): 1269-1275. doi: 10.3788/HPLPB20122406.1269
    [11]Wang Haitao, Fan Chengyu, Shen Hong, Qiao Chunhong, Zhang Jinghui, Zhang Pengfei, Ma Huimin, Xu Huiling. Temporal evolution of plasma density in femtosecond light filaments[J]. High Power Laser and Particle Beams, 2012, 24(05): 1024-1028. doi: 10.3788/HPLPB20122405.1024
    [12]Tong Xin, Li Xiao’ang, Zhao Junping, Zhang Qiaogen. Arc radius and resistance measurement of spark gap switch[J]. High Power Laser and Particle Beams, 2012, 24(03): 647-650. doi: 10.3788/HPLPB20122403.0647
    [13]zhang zehai, shu ting, zhang jun, liu jing, zhu jun. Suppression of parasitic mode oscillation in relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [14]jin zhaoxin, jiao qingjie, chen xi, jing xiaopeng. Helical flux compression generator utilizing detonation products of aluminized explosive to compress magnetic flux[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [15]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [16]tang enling, zhang qingming, zhang jian. Conductivity measurement of an expanding plasma cloud generated by hypervelocity impact LY12 aluminum target[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [17]li sheng-yin, wu wei-dong, wang feng, wang xue-min, tang yong-jian, sun wei-guo. Effects of Fe-embedding on microstructure and electrical properties of diamond like carbon films[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [18]gao jing-ming, liu yong-gui, yin yi, yang jian-hua. Numerical simulation of gas spark gap discharge[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [19]lin chen, zhang li-wen, qin xiao, gao jun-yi. Conductivity of self-guided laser plasma channel produced by femtosecond laser pulses in air[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [20]xie wei-ping, gong xing-gen, hao shi-rong, sun qi-zhi, liu lie-fang, dai wen-feng, liu zheng-fen, wang min-hua, han wen-hui, dai ying-ming, ding bo-nan. The generation of high Voltage by MFCG through combined Pulse power conditioning system[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Cited by

    Periodical cited type(1)

    1. 张文强,罗宇轩,杨长河. 等离子体技术在活性炭再生中的研究进展. 现代化工. 2023(S1): 49-53+58 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.3 %FULLTEXT: 33.3 %META: 61.1 %META: 61.1 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 1.2 %其他: 1.2 %China: 0.4 %China: 0.4 %France: 0.8 %France: 0.8 %Germany: 0.2 %Germany: 0.2 %India: 0.1 %India: 0.1 %Japan: 0.5 %Japan: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Netherlands: 0.2 %Netherlands: 0.2 %United States: 0.2 %United States: 0.2 %[]: 0.7 %[]: 0.7 %三明: 0.1 %三明: 0.1 %上海: 3.2 %上海: 3.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %开封: 0.1 %开封: 0.1 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.4 %无锡: 0.4 %昌吉: 0.1 %昌吉: 0.1 %普洱: 0.1 %普洱: 0.1 %普赖恩维尔: 0.2 %普赖恩维尔: 0.2 %杜伊斯堡: 0.1 %杜伊斯堡: 0.1 %杭州: 0.8 %杭州: 0.8 %梅州: 0.1 %梅州: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 2.3 %武汉: 2.3 %沃思堡: 0.2 %沃思堡: 0.2 %沈阳: 0.5 %沈阳: 0.5 %泉州: 0.1 %泉州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约州: 0.1 %纽约州: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 22.3 %芒廷维尤: 22.3 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 39.7 %西宁: 39.7 %西安: 1.7 %西安: 1.7 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.2 %运城: 1.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.5 %重庆: 0.5 %长沙: 1.9 %长沙: 1.9 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %其他其他ChinaFranceGermanyIndiaJapanNahantNetherlandsUnited States[]三明上海东莞中山丹东保定兰州加利福尼亚州北京十堰南京南通台州合肥哥伦布嘉兴大庆大连天津宜春宣城常州平顶山广州开封弗吉尼亚州张家口徐州惠州成都扬州新乡新加坡无锡昌吉普洱普赖恩维尔杜伊斯堡杭州梅州武威武汉沃思堡沈阳泉州泸州洛阳济南深圳温州湖州湘潭漯河烟台石家庄福州秦皇岛纽瓦克纽约州绵阳芒廷维尤芝加哥苏州衢州西宁西安贵阳运城邯郸郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (860) PDF downloads(80) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return