Volume 33 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321
Citation: Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321

Numerical analysis of plasma and shock wave characteristics of the discharge in liquid

doi: 10.11884/HPLPB202133.200321
  • Received Date: 2020-11-26
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-06-23
  • Publish Date: 2021-07-15
  • Based on conservation equation of energy, channel characteristics of the cylindrical geometry of the plasma were described under different conductivity models. The variation of the channel radius, temperature, resistance, current and dissipated energy with time is obtained. The variation of shock wave pressure at a certain distance from the center of the discharge gap is also given. The results are compared with those calculated based on the spherical geometry of the plasma channel. The purpose of this paper is to provide a reference for further study of physical and chemical characteristics and shock wave characteristics of the discharge in liquid. The results show that there is significant difference in the channel pressure and radius when the plasma channel is respectively regarded as a sphere and a cylinder, but there is little difference in other physical properties. When the physical characteristics except the shock wave characteristic are described by using three conductivity models, the change trend is almost the same, while the shock wave characteristic is described more accurately by using the conductivity model σ2. By comparing the changes of electrical parameters and pressure parameters, the applicability of the model can be selected according to the experimental data or specific research problems, which also provides a reference for further study of the physicochemical characteristics and shock wave characteristics of discharge plasma in liquid.
  • loading
  • [1]
    孙冰. 液相放电等离子体及其应用[M]. 北京: 科学出版社, 2013.

    Sun Bing. Discharge plasma in liquid and its application[M]. Beijing: Science Press, 2013
    [2]
    张辉, 蔡志翔, 陈安明, 等. 液相放电等离子体破岩室内实验与破岩机理[J]. 石油学报, 2020, 41(5):615-628. (Zhang Hui, Cai Zhixiang, Chen Anming, et al. Experiments and mechanism of rock breaking by the plasma shock wave generated by underwater discharge[J]. Acta Petrolei Sinica, 2020, 41(5): 615-628 doi: 10.7623/syxb202005010
    [3]
    刘云龙, 王志刚, 汪桐, 等. 等离子体协同絮凝降解乳化油废水COD的研究[J]. 安徽理工大学学报(自然科学版), 2019, 39(5):64-68. (Liu Yunlong, Wang Zhigang, Wang Tong, et al. Study on COD degradation of emulsified oil wastewater by plasma co-flocculation[J]. Journal of Anhui University of Science and Technology(Natural Science), 2019, 39(5): 64-68
    [4]
    陈景秋, 韦春霞, 邓艇, 等. 体外冲击波碎石技术的力学机理的研究[J]. 力学进展, 2007, 37(4):590-599. (Cheng Jingqiu, Wei Chunxia, Deng Ting, et al. Studies on mechanical mechanism about stone comminution and tissue trauma in extracorporeal shock wave lithotripsy[J]. Advances in Mechanics, 2007, 37(4): 590-599
    [5]
    左公宁. 水中脉冲电晕放电的某些特性[J]. 高电压技术, 2003, 29(8):37-38. (Zuo Gongning. Some properties of the impulse corona discharge in water[J]. High Voltage Engineering, 2003, 29(8): 37-38 doi: 10.3969/j.issn.1003-6520.2003.08.015
    [6]
    李宁, 雷开卓, 黄建国, 等. 采用时变电阻的水下高压放电模型[J]. 高电压技术, 2009, 35(12):3060-3064. (Li Ning, Lei Kaizhuo, Huang Jianguo, et al. Model of underwater high-voltage discharge using time-varying resistance[J]. High Voltage Engineering, 2009, 35(12): 3060-3064
    [7]
    Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011
    [8]
    李培芳, 金方勤. 液中放电冲击波和等离子体参数的计算[J]. 浙江大学学报(自然科学版), 1994(1):27-35. (Li Peifang, Jin Fangqin. Calculations of shock wave and plasma parameters of the discharge in liquid[J]. Journal of Zhejiang University(Natural Science), 1994(1): 27-35
    [9]
    蒋杰灵, 兰生, 杨嘉祥. 水中脉冲放电等离子体特性数值解析[J]. 哈尔滨理工大学学报, 2008(5):107-111. (Jiang Jieling, Lan Sheng, Yang Jiaxiang. Numerical analysis of the plasma characteristics of pulsed discharge in water[J]. Journal of Harbin University of Science and Technology, 2008(5): 107-111 doi: 10.3969/j.issn.1007-2683.2008.05.029
    [10]
    Cook J A, Gleeson A M, Roberts R M, et al. A spark-generated bubble model with semi-empirical mass transport[J]. The Journal of the Acoustical Society of America, 1997, 101(4): 1908-1920. doi: 10.1121/1.418236
    [11]
    Roberts R M, Cook J A, Rogers R L, et al. The energy partition of underwater sparks[J]. The Journal of the Acoustical Society of America, 1996, 99(6): 3465-3475. doi: 10.1121/1.414993
    [12]
    Eubank P T, Patel M R, Barrufet M A, et al. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model[J]. Journal of Applied Physics, 1993, 73(11): 7900-7909. doi: 10.1063/1.353942
    [13]
    Liu S W, Liu Y, Ren Y J, et al. Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26: 023522. doi: 10.1063/1.5064847
    [14]
    Fedorov V M. High power nanosecond discharge channel in water[M]. New York: Megagauss Fields and Pulsed Power Systems. 1990.
    [15]
    Ziman J M. Principles of the theory of solids[M]. Cambridge: Cambridge University Press, 1972.
    [16]
    Warne L K, Jorgenson R E, Lehr J M. Resistance of a water spark[R]. SAND2005-6994, 2005.
    [17]
    Liu S, Liu Y, Ren Y, et al. Characteristic analysis of plasma channel and shock wave in electrohydraulic pulsed discharge[J]. Physics of Plasmas, 2019, 26: 93509. doi: 10.1063/1.5092362
    [18]
    Spitzer L J Jr. Physics of fully ionized gases[J]. New York: John Wiley & Sons, 1962: 136-143.
    [19]
    Kratel A W H. Pulsed power discharges in water[D]. Pasadena: California Institute of Technology. 1996.
    [20]
    王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科学技术大学, 2012.

    Wang Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha: National University of Defense Technology, 2012
    [21]
    Braginskii S I. Theory of the development of a spark channel[J]. Soviet Phys JETP, 1958, 34 (6): 1068-1074.
    [22]
    Touya G, Reess T, Pecastaing L, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves[J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5236-5244. doi: 10.1088/0022-3727/39/24/021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (786) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return