Volume 33 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Dong Pan, Liu Erxiang, Li Jie, et al. Luminous spot distribution of vacuum arc discharge with deuteride cathode[J]. High Power Laser and Particle Beams, 2021, 33: 034006. doi: 10.11884/HPLPB202133.200322
Citation: Dong Pan, Liu Erxiang, Li Jie, et al. Luminous spot distribution of vacuum arc discharge with deuteride cathode[J]. High Power Laser and Particle Beams, 2021, 33: 034006. doi: 10.11884/HPLPB202133.200322

Luminous spot distribution of vacuum arc discharge with deuteride cathode

doi: 10.11884/HPLPB202133.200322
  • Received Date: 2020-11-30
  • Rev Recd Date: 2021-01-25
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • Vacuum arc discharges with deuteride cathode have many applications, such as nondestructive examination, oil logging, and neutron activation analysis. Deuteride cathode releases many gases during discharge, which is quite different from metal cathode. The discharges display some unique characteristics. A maguifying lens and an ICCD camera are used to observe the luminous spots of vacuum arc discharge. The space resolution of this system is about 5 μm, and the time resolution is about 2 ns. The arc current has a full width at half maximum (FWHM) of about 0.9 μs, and its waveform is half cycle sinusoidal. The results show that the luminous spots merge together into a big one in most cases. Sometimes there are two or more luminous spots due to droplets. The area of the luminous spot grows as arc current increases. The cathode spots’ merging is helpful to increase plasma density and improve discharge efficiency.
  • loading
  • [1]
    MacGill R A, Dickinson M R, Brown I G. Vacuum arc ion sources—Micro to macro[J]. Review of Scientific Instruments, 1996, 67(3): 1210-1212. doi: 10.1063/1.1146734
    [2]
    Ying Jianjian, Xiao Xiangheng, Dai Zhigao, et al. Synthesis of graphene by MEVVA source ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 305: 29-32. doi: 10.1016/j.nimb.2013.04.044
    [3]
    Hollinger R, Galonska M. Status of vacuum arc ion source development for injection of high current uranium ion beams into the GSI accelerator facility[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 239(3): 227-244. doi: 10.1016/j.nimb.2005.04.062
    [4]
    Wang J L, Zhang G L, Wang Y N, et al. Grid-shadow effect in grid-enhanced plasma source ion implantation[J]. Surface and Coatings Technology, 2005, 192(1): 101-105. doi: 10.1016/j.surfcoat.2004.04.069
    [5]
    米夏兹 Г А. 真空放电物理和高功率脉冲技术[M]. 李国政, 译. 北京: 国防工业出版社, 2007: 149-151.

    Месяц Г А. Vacuum discharge physics and high power pulse technology[M]. Li Guozheng, trans. Beijing: National Defense Industry Press, 2007: 149-151
    [6]
    Beilis I I. Vacuum arc cathode spot theory: history and evolution of the mechanisms[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 3412-3433. doi: 10.1109/TPS.2019.2904324
    [7]
    Anders A. Cathodic arcs: from fractal spots to energetic condensation[M]. New York: Springer, 2008: 183-186.
    [8]
    拉弗蒂J M. 真空电弧理论和应用[M]. 程积高, 译. 北京: 机械工业出版社, 1985: 148-149.

    Lafferty J M. Vacuum arcs theory and application[M]. Cheng Jigao, trans. Beijing: China Machine Press, 1985: 148-149
    [9]
    唐建, 卢彪, 伍春雷, 等. 条纹相机在真空弧离子源等离子体诊断中的应用[J]. 强激光与粒子束, 2015, 27:084001. (Tang Jian, Lu Biao, Wu Chunlei, et al. Application of a streak camera to diagnosis of plasma in vacuum arc ion source[J]. High Power Laser and Particle Beams, 2015, 27: 084001 doi: 10.11884/HPLPB201527.084001
    [10]
    Aleksandrov V D, Bogolubov E P, Bochkarev O V, et al. Application of neutron generators for high explosives, toxic agents and fissile material detection[J]. Applied Radiation and Isotopes, 2005, 63(5/6): 537-543.
    [11]
    郑世平, 秦爱玲, 赵舒平. 测井中子发生器[J]. 地球物理学进展, 2009, 24(4):1521-1526. (Zheng Shiping, Qin Ailing, Zhao Shuping. Well logging neutron generator[J]. Progress in Geophysics, 2009, 24(4): 1521-1526 doi: 10.3969/j.issn.1004-2903.2009.04.047
    [12]
    Walko R J, Rochau G E. A high output neutron tube using an occluded gas ion source[J]. IEEE Transactions on Nuclear Science, 1981, 28(2): 1531-1534. doi: 10.1109/TNS.1981.4331459
    [13]
    Shkol’nik S M. Arc discharges with gas-impregnated cathodes in vacuum[J]. IEEE Transactions on Plasma Science, 2001, 29(5): 675-683. doi: 10.1109/27.964453
    [14]
    Barengolts S A, Karnaukhov D Y, Nikolaev A G, et al. Generation of hydrogen isotope ions in a vacuum arc discharge with a composite zirconium deuteride cathode[J]. Technical Physics, 2015, 60(7): 989-999. doi: 10.1134/S1063784215070051
    [15]
    陈磊, 金大志, 程亮, 等. 含氢电极脉冲放电等离子体特性诊断[J]. 强激光与粒子束, 2011, 23(5):1361-1364. (Chen Lei, Jin Dazhi, Cheng Liang, et al. Diagnosis of plasmas generated by pulsed vacuum arc discharge at hydrogen impregnated electrodes[J]. High Power Laser and Particle Beams, 2011, 23(5): 1361-1364 doi: 10.3788/HPLPB20112305.1361
    [16]
    董攀, 李杰, 郑乐, 等. 真空弧放电TiH合金阴极表面形貌分析[J]. 强激光与粒子束, 2018, 30:014001. (Dong Pan, Li Jie, Zheng Le, et al. Surface morphology analysis of TiH cathode in vacuum arc discharge[J]. High Power Laser and Particle Beams, 2018, 30: 014001 doi: 10.11884/HPLPB201830.170356
    [17]
    Kaufmann H T C, Cunha M D, Benilov M S, et al. Detailed numerical simulation of cathode spots in vacuum arcs: Interplay of different mechanisms and ejection of droplets[J]. Journal of Applied Physics, 2017, 122: 163303. doi: 10.1063/1.4995368
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1020) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return