Shen Zhanpeng, Chen Xiaojuan, Chen Xueqian, et al. Two parameter optimization methods for large aperture mirror[J]. High Power Laser and Particle Beams, 2018, 30: 062001. doi: 10.11884/HPLPB201830.180011
Citation: Yang Hong, Zhang Dewei, Wang Xian, et al. A highly selective tunable filter with switchable bandpass and bandstop frequency response[J]. High Power Laser and Particle Beams, 2021, 33: 043001. doi: 10.11884/HPLPB202133.200327

A highly selective tunable filter with switchable bandpass and bandstop frequency response

doi: 10.11884/HPLPB202133.200327
  • Received Date: 2020-12-29
  • Rev Recd Date: 2021-02-05
  • Available Online: 2021-03-25
  • Publish Date: 2021-05-02
  • A highly selective tunable filter with switchable bandpass (BP)-to- bandstop (BS) frequency response is designed. The frequency of the filter can be adjusted by loading a varactor diode on the end of microstrip resonator and branch; a PIN diode can be used to switch BP and BS characteristics. The filter is analyzed using the even- and odd-mode method, and constant absolute bandwidth (CABW) is achieved. Then, a source and load coupling is introduced so that there is a transmission zero (TZ) on each side of band, which can be almost keep in the same relative position throughout the frequency tuning range (FTR). Therefore, in the FTR, the filter achieves high selectivity and good out-of-band suppression characteristics. The FTR of the proposed filter is 5.58~5.89 GHz, the measured attenuation within the stopband is greater than 14 dB with CABW of (80±5) MHz under BS state; the FTR is 5.42−5.79 GHz, CABW is (120±5) MHz, the measured return loss and insertion loss within the passband are about 13 dB and 1.69−2.25 dB under BP state, respectively. Moreover, the fabricated tunable filter has a compact size of 0.28λg×0.62λg (λg is the wavelength of the center frequency during the FTR). The experimental and simulated results are in good agreement.
  • [1]
    Chen Chifeng, Wang Guoyun, Li Honghen, et al. Microstrip switchable and fully tunable bandpass filter with continuous frequency tuning range[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6): 500-502. doi: 10.1109/LMWC.2018.2831440
    [2]
    Karpuz C, Gorur A K, Emur M, et al. Quad-band microstrip bandstop filter design using dual-mode open loop resonators having thin film capacitors[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(11): 873-875. doi: 10.1109/LMWC.2016.2615092
    [3]
    Feng Wenjie, Hong Meiling, Che Wenquan, et al. Dual-band microstrip bandstop filter with multiple transmission poles using coupled lines[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(3): 236-238. doi: 10.1109/LMWC.2017.2661704
    [4]
    Xiang Qianyin, Feng Quanyuan, Huang Xiaoguo, et al. Electrical tunable microstrip LC bandpass filters with constant bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(3): 1124-1130. doi: 10.1109/TMTT.2013.2241781
    [5]
    Tsai H Y, Huang Tingyi, Wu R B. Varactor-tuned compact dual-mode tunable filter with constant passband characteristics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(9): 1399-1407. doi: 10.1109/TCPMT.2016.2599205
    [6]
    Feng Wenjie, Shang Yuxia, Che Wenquan, et al. Multifunctional reconfigurable filter using transversal signal-interaction concepts[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(11): 980-982. doi: 10.1109/LMWC.2017.2750022
    [7]
    Wong P W, Hunter I. Electronically tunable filters[J]. IEEE Microwave Magazine, 2009, 10(6): 46-54. doi: 10.1109/MMM.2009.933593
    [8]
    Hunter I C, Rhodes J D. Electronically tunable microwave bandpass filters[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(9): 1354-1360. doi: 10.1109/TMTT.1982.1131260
    [9]
    Kim B W, Yun S W. Varactor-tuned combline bandpass filter using step-impedance microstrip lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(4): 1279-1283. doi: 10.1109/TMTT.2004.825626
    [10]
    王显, 张德伟, 刘庆, 等. 一种高选择性的可调0.83~2.15 GHz带通滤波器[J]. 强激光与粒子束, 2019, 31:113001). (Wang Xian, Zhang Dewei, Liu Qing, et al. A tunable 0.83-2.15 GHz bandpass filter with high selectivity[J]. High Power Laser and Particle Beams, 2019, 31: 113001)
    [11]
    Ebrahimi A, Baum T, Scott J, et al. Continuously tunable dual-mode bandstop filter[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(5): 419-421. doi: 10.1109/LMWC.2018.2821841
    [12]
    Li Qun, Chen Xiong, Yang Tao, et al. Tunable bandstop filter with high suppression and wide tuning range[J]. Electronics Letters, 2019, 55(16): 910-912. doi: 10.1049/el.2019.1855
    [13]
    Chan K Y, Ramer R. Waveguide switchable bandstop and bandpass filters using RF MEMS switches[C]//Proceedings of 2019 International Conference on Microwave and Millimeter Wave Technology. 2019: 19-22.
    [14]
    Fan Maoyu, Song Kaijun, Zhu Yu, et al. Compact bandpass-to-bandstop reconfigurable filter with wide tuning range[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(3): 198-200. doi: 10.1109/LMWC.2019.2892846
    [15]
    李润铄. 新型平面可调带通-带阻滤波器的研究[D]. 广州: 华南理工大学, 2019: 43-50.

    Li Runshuo. Research on novel planar tunable bandpass-to-bandstop filter[D]. Guangzhou: South China University of Technology, 2019: 43-50).
    [16]
    Yang Tao, Rebeiz G M. Bandpass-to-bandstop reconfigurable tunable filters with frequency and bandwidth controls[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(7): 2288-2297. doi: 10.1109/TMTT.2017.2679182
    [17]
    Psychogiou D, Gómez-García R, Peroulis D. Fully-reconfigurable bandpass/bandstop filters and their coupling-matrix representation[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(1): 22-24. doi: 10.1109/LMWC.2015.2505635
  • Relative Articles

    [1]Zhu Xiangqin, Wu Wei, Cai Libing. Simulation and optimization of novel movable TEM horn radiating-wave simulator[J]. High Power Laser and Particle Beams, 2024, 36(7): 073002. doi: 10.11884/HPLPB202436.240093
    [2]Zhao Jinglin, Wang Zhiqiang, Wang Jinjun, Zhang Dongdong, Li Guofeng. Deposited energy optimization analysis of discharge in water based on Kriging model[J]. High Power Laser and Particle Beams, 2023, 35(3): 035005. doi: 10.11884/HPLPB202335.220240
    [3]Li Qiong, Liu Zijing, Xiao Hao, XiaoYingjie, Zhao Pengcheng, Wang Chang, Yu Tao. Intelligent optimization method for lead-bismuth reactor based on Kriging surrogate model[J]. High Power Laser and Particle Beams, 2022, 34(5): 056007. doi: 10.11884/HPLPB202234.210560
    [4]Liang Xiuqiang, Yuan Jiehong, Zhou Shiming. Simulation and experimental study on temperature field of ion thruster's grids assembly[J]. High Power Laser and Particle Beams, 2018, 30(11): 114001. doi: 10.11884/HPLPB201830.180208
    [5]Wan Haixia, Xu Zhilong, Shao Jing, Sun Zheng, Li Long, Wu Xiaochun. Primary design and optimization of shielding for nuclear medical ship reactor[J]. High Power Laser and Particle Beams, 2017, 29(01): 016010. doi: 10.11884/HPLPB201729.160235
    [6]Cui Ding, Ma She, Li Caiyang, Ye Changchun. Dynamical model modification of optical mirror holder based on sensitivity analysis[J]. High Power Laser and Particle Beams, 2014, 26(07): 071003. doi: 10.11884/HPLPB201426.071003
    [7]Huang Zuxin, Hu Xiaoyang, Zhou Wenchao, Tian Xiaoqiang. Development of thin film’s weak absorption testing set-up[J]. High Power Laser and Particle Beams, 2013, 25(S0): 13-18.
    [8]Wang Qiang, Zhao Hailong, Dai Zhiyong, Sun Wensui, Xie Long, Wang Wendou. Optimization of beam transport magnetic field in linear induction accelerator based on genetic algorithm[J]. High Power Laser and Particle Beams, 2013, 25(05): 1256-1260. doi: 10.3788/HPLPB20132505.1256
    [9]li chunbo, yu chunhui, chai jinlong, liang yexing, liu chunping, wang hongzhi, li jingzhen, huang hongbin. Design of rotating mirror for ultra-high speed camera based on dynamic characteristic[J]. High Power Laser and Particle Beams, 2011, 23(12): 50-51.
    [10]yu xiaohui, yang hanwu, zhang zicheng, wang wei. Design of repetitive pulsing and guiding magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [11]jia huaiting, feng bin, li fuquan, xiang yong, wang fang, han wei, li keyu. Wave-front reconstruction from intensity distributions near focal plane[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [12]wu hanyu, cong peitian, guo ning, sun tieping, zhang guowei. Optimization design of electromagnetic field of multigap gas switch[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [13]zhang jun-wei, zhou yi, zhou hai, wang shi-long, jing feng, feng bin, lin dong-hui. Influences of switchyard mirror mount on beam direction under micro vibration excitation[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [14]he xiao-zhong, yang guo-jun, liu cheng-jun. Optimization research on image lens of proton radiography[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [15]wu wen-zhuang, zhao gang, li shi, yin he-jun. Design and optimization of electron gun used in high efficiency travelling wave tube[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [16]xia hai-yun, sun dong-song, shen fa-hua, dong jing-jing. Optimization of etalon parameters in direct detection Doppler wind lidar[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [17]wang li, li hong-fu, niu xin-jian, zhao-qing. Influence of the design parameters of magnetic injection gun on it's performance[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [18]wang li, li hong-fu, niu xin-jian, deng xue. Analysis of the influence of the magnetic field profiles on the high-power gyrotron's magnetic injection gun[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [19]cheng cheng. Optimization of five gas admixtures in a CO2 laser[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Cited by

    Periodical cited type(5)

    1. 时英钟,邵帅,邵明振. 大口径激光发射窗口镜多点支撑下结构研究. 机械设计与制造. 2024(07): 145-150 .
    2. 郑胜亨,马文静,杨英,曹庭分,陈晓娟,郭雨源,廖予祯,张鑫,韩伟,邓学伟,胡东霞. 大口径反射镜低应力夹持技术. 强激光与粒子束. 2021(09): 10-15 . 本站查看
    3. 孙奇,宫雪非. 基于混合优化方法的大口径主镜设计. 光学学报. 2020(22): 114-121 .
    4. 丁锴铖,连华东,蔺宇辉. 基于等效模型的多层蜂窝堆栈ULE反射镜优化设计研究. 光学技术. 2019(01): 16-20 .
    5. 黎代维,胡绍全,陈学前,陈晓娟. 大口径反射镜背部支撑结构的响应面优化方法. 强度与环境. 2019(01): 42-48 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 77.0 %META: 77.0 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %其他: 1.1 %其他: 1.1 %China: 0.3 %China: 0.3 %France: 0.2 %France: 0.2 %India: 0.1 %India: 0.1 %United States: 0.8 %United States: 0.8 %[]: 2.7 %[]: 2.7 %上海: 0.6 %上海: 0.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 22.1 %北京: 22.1 %南京: 0.3 %南京: 0.3 %南宁: 0.2 %南宁: 0.2 %南昌: 0.2 %南昌: 0.2 %台州: 0.3 %台州: 0.3 %台湾省: 0.2 %台湾省: 0.2 %咸阳: 0.1 %咸阳: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %安康: 0.1 %安康: 0.1 %巴黎: 0.2 %巴黎: 0.2 %广州: 0.1 %广州: 0.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.9 %张家口: 0.9 %成都: 0.2 %成都: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.2 %杭州: 0.2 %柳州: 0.1 %柳州: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.4 %深圳: 0.4 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 9.7 %芒廷维尤: 9.7 %衢州: 0.2 %衢州: 0.2 %西宁: 52.1 %西宁: 52.1 %西安: 0.3 %西安: 0.3 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.3 %郑州: 0.3 %重庆: 0.2 %重庆: 0.2 %长治: 0.1 %长治: 0.1 %其他其他ChinaFranceIndiaUnited States[]上海中山临汾丹东北京南京南宁南昌台州台湾省咸阳嘉兴安康巴黎广州廊坊张家口成都晋城普洱杭州柳州桃园武汉淮南深圳玉林石家庄福州秦皇岛绵阳芒廷维尤衢州西宁西安西雅图贵阳运城郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (1506) PDF downloads(75) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return