Citation: | Yang Hong, Zhang Dewei, Wang Xian, et al. A highly selective tunable filter with switchable bandpass and bandstop frequency response[J]. High Power Laser and Particle Beams, 2021, 33: 043001. doi: 10.11884/HPLPB202133.200327 |
[1] |
Chen Chifeng, Wang Guoyun, Li Honghen, et al. Microstrip switchable and fully tunable bandpass filter with continuous frequency tuning range[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6): 500-502. doi: 10.1109/LMWC.2018.2831440
|
[2] |
Karpuz C, Gorur A K, Emur M, et al. Quad-band microstrip bandstop filter design using dual-mode open loop resonators having thin film capacitors[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(11): 873-875. doi: 10.1109/LMWC.2016.2615092
|
[3] |
Feng Wenjie, Hong Meiling, Che Wenquan, et al. Dual-band microstrip bandstop filter with multiple transmission poles using coupled lines[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(3): 236-238. doi: 10.1109/LMWC.2017.2661704
|
[4] |
Xiang Qianyin, Feng Quanyuan, Huang Xiaoguo, et al. Electrical tunable microstrip LC bandpass filters with constant bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(3): 1124-1130. doi: 10.1109/TMTT.2013.2241781
|
[5] |
Tsai H Y, Huang Tingyi, Wu R B. Varactor-tuned compact dual-mode tunable filter with constant passband characteristics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(9): 1399-1407. doi: 10.1109/TCPMT.2016.2599205
|
[6] |
Feng Wenjie, Shang Yuxia, Che Wenquan, et al. Multifunctional reconfigurable filter using transversal signal-interaction concepts[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(11): 980-982. doi: 10.1109/LMWC.2017.2750022
|
[7] |
Wong P W, Hunter I. Electronically tunable filters[J]. IEEE Microwave Magazine, 2009, 10(6): 46-54. doi: 10.1109/MMM.2009.933593
|
[8] |
Hunter I C, Rhodes J D. Electronically tunable microwave bandpass filters[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(9): 1354-1360. doi: 10.1109/TMTT.1982.1131260
|
[9] |
Kim B W, Yun S W. Varactor-tuned combline bandpass filter using step-impedance microstrip lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(4): 1279-1283. doi: 10.1109/TMTT.2004.825626
|
[10] |
王显, 张德伟, 刘庆, 等. 一种高选择性的可调0.83~2.15 GHz带通滤波器[J]. 强激光与粒子束, 2019, 31:113001). (Wang Xian, Zhang Dewei, Liu Qing, et al. A tunable 0.83-2.15 GHz bandpass filter with high selectivity[J]. High Power Laser and Particle Beams, 2019, 31: 113001)
|
[11] |
Ebrahimi A, Baum T, Scott J, et al. Continuously tunable dual-mode bandstop filter[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(5): 419-421. doi: 10.1109/LMWC.2018.2821841
|
[12] |
Li Qun, Chen Xiong, Yang Tao, et al. Tunable bandstop filter with high suppression and wide tuning range[J]. Electronics Letters, 2019, 55(16): 910-912. doi: 10.1049/el.2019.1855
|
[13] |
Chan K Y, Ramer R. Waveguide switchable bandstop and bandpass filters using RF MEMS switches[C]//Proceedings of 2019 International Conference on Microwave and Millimeter Wave Technology. 2019: 19-22.
|
[14] |
Fan Maoyu, Song Kaijun, Zhu Yu, et al. Compact bandpass-to-bandstop reconfigurable filter with wide tuning range[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(3): 198-200. doi: 10.1109/LMWC.2019.2892846
|
[15] |
李润铄. 新型平面可调带通-带阻滤波器的研究[D]. 广州: 华南理工大学, 2019: 43-50.
Li Runshuo. Research on novel planar tunable bandpass-to-bandstop filter[D]. Guangzhou: South China University of Technology, 2019: 43-50).
|
[16] |
Yang Tao, Rebeiz G M. Bandpass-to-bandstop reconfigurable tunable filters with frequency and bandwidth controls[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(7): 2288-2297. doi: 10.1109/TMTT.2017.2679182
|
[17] |
Psychogiou D, Gómez-García R, Peroulis D. Fully-reconfigurable bandpass/bandstop filters and their coupling-matrix representation[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(1): 22-24. doi: 10.1109/LMWC.2015.2505635
|
[1] | Zhu Xiangqin, Wu Wei, Cai Libing. Simulation and optimization of novel movable TEM horn radiating-wave simulator[J]. High Power Laser and Particle Beams, 2024, 36(7): 073002. doi: 10.11884/HPLPB202436.240093 |
[2] | Zhao Jinglin, Wang Zhiqiang, Wang Jinjun, Zhang Dongdong, Li Guofeng. Deposited energy optimization analysis of discharge in water based on Kriging model[J]. High Power Laser and Particle Beams, 2023, 35(3): 035005. doi: 10.11884/HPLPB202335.220240 |
[3] | Li Qiong, Liu Zijing, Xiao Hao, XiaoYingjie, Zhao Pengcheng, Wang Chang, Yu Tao. Intelligent optimization method for lead-bismuth reactor based on Kriging surrogate model[J]. High Power Laser and Particle Beams, 2022, 34(5): 056007. doi: 10.11884/HPLPB202234.210560 |
[4] | Liang Xiuqiang, Yuan Jiehong, Zhou Shiming. Simulation and experimental study on temperature field of ion thruster's grids assembly[J]. High Power Laser and Particle Beams, 2018, 30(11): 114001. doi: 10.11884/HPLPB201830.180208 |
[5] | Wan Haixia, Xu Zhilong, Shao Jing, Sun Zheng, Li Long, Wu Xiaochun. Primary design and optimization of shielding for nuclear medical ship reactor[J]. High Power Laser and Particle Beams, 2017, 29(01): 016010. doi: 10.11884/HPLPB201729.160235 |
[6] | Cui Ding, Ma She, Li Caiyang, Ye Changchun. Dynamical model modification of optical mirror holder based on sensitivity analysis[J]. High Power Laser and Particle Beams, 2014, 26(07): 071003. doi: 10.11884/HPLPB201426.071003 |
[7] | Huang Zuxin, Hu Xiaoyang, Zhou Wenchao, Tian Xiaoqiang. Development of thin film’s weak absorption testing set-up[J]. High Power Laser and Particle Beams, 2013, 25(S0): 13-18. |
[8] | Wang Qiang, Zhao Hailong, Dai Zhiyong, Sun Wensui, Xie Long, Wang Wendou. Optimization of beam transport magnetic field in linear induction accelerator based on genetic algorithm[J]. High Power Laser and Particle Beams, 2013, 25(05): 1256-1260. doi: 10.3788/HPLPB20132505.1256 |
[9] | li chunbo, yu chunhui, chai jinlong, liang yexing, liu chunping, wang hongzhi, li jingzhen, huang hongbin. Design of rotating mirror for ultra-high speed camera based on dynamic characteristic[J]. High Power Laser and Particle Beams, 2011, 23(12): 50-51. |
[10] | yu xiaohui, yang hanwu, zhang zicheng, wang wei. Design of repetitive pulsing and guiding magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[11] | jia huaiting, feng bin, li fuquan, xiang yong, wang fang, han wei, li keyu. Wave-front reconstruction from intensity distributions near focal plane[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[12] | wu hanyu, cong peitian, guo ning, sun tieping, zhang guowei. Optimization design of electromagnetic field of multigap gas switch[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- . |
[13] | zhang jun-wei, zhou yi, zhou hai, wang shi-long, jing feng, feng bin, lin dong-hui. Influences of switchyard mirror mount on beam direction under micro vibration excitation[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- . |
[14] | he xiao-zhong, yang guo-jun, liu cheng-jun. Optimization research on image lens of proton radiography[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- . |
[15] | wu wen-zhuang, zhao gang, li shi, yin he-jun. Design and optimization of electron gun used in high efficiency travelling wave tube[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- . |
[16] | xia hai-yun, sun dong-song, shen fa-hua, dong jing-jing. Optimization of etalon parameters in direct detection Doppler wind lidar[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- . |
[17] | wang li, li hong-fu, niu xin-jian, zhao-qing. Influence of the design parameters of magnetic injection gun on it's performance[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- . |
[18] | wang li, li hong-fu, niu xin-jian, deng xue. Analysis of the influence of the magnetic field profiles on the high-power gyrotron's magnetic injection gun[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- . |
[19] | cheng cheng. Optimization of five gas admixtures in a CO2 laser[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- . |
1. | 时英钟,邵帅,邵明振. 大口径激光发射窗口镜多点支撑下结构研究. 机械设计与制造. 2024(07): 145-150 . ![]() | |
2. | 郑胜亨,马文静,杨英,曹庭分,陈晓娟,郭雨源,廖予祯,张鑫,韩伟,邓学伟,胡东霞. 大口径反射镜低应力夹持技术. 强激光与粒子束. 2021(09): 10-15 . ![]() | |
3. | 孙奇,宫雪非. 基于混合优化方法的大口径主镜设计. 光学学报. 2020(22): 114-121 . ![]() | |
4. | 丁锴铖,连华东,蔺宇辉. 基于等效模型的多层蜂窝堆栈ULE反射镜优化设计研究. 光学技术. 2019(01): 16-20 . ![]() | |
5. | 黎代维,胡绍全,陈学前,陈晓娟. 大口径反射镜背部支撑结构的响应面优化方法. 强度与环境. 2019(01): 42-48 . ![]() |