Citation: | Wang Sihao, Liao Cheng, Shang Yuping, et al. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33: 043002. doi: 10.11884/HPLPB202133.200331 |
[1] |
Shang Yuping, Shen Zhongxiang. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2386-2396. doi: 10.1109/TAP.2017.2677949
|
[2] |
Shang Yuping, Xiao Shaoqiu, Shen Zhongxiang. Edge-on backscattering enhancement based on quasi-superdirective reradiation[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 539-542.
|
[3] |
He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729
|
[4] |
Edries M, Mohamed H A, Hekal S S, et al. A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization[J]. IEEE Access, 2020, 8: 143723-143733. doi: 10.1109/ACCESS.2020.3009904
|
[5] |
Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333
|
[6] |
Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. On the design of single-layer circuit analog absorber using double-square-loop array[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022-6029. doi: 10.1109/TAP.2013.2280836
|
[7] |
强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222. (Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222
|
[8] |
Bashiri M, Ghobadi C, Nourinia J, et al. WiMAX, WLAN, and X-band filtering mechanism: simple-structured triple-band frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3245-3248. doi: 10.1109/LAWP.2017.2771265
|
[9] |
Esparza N, Alcón P, Herrán L F, et al. Substrate integrated waveguides structures using frequency selective surfaces operating in stop-band (SBFSS-SIW)[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 113-115. doi: 10.1109/LMWC.2016.2517066
|
[10] |
Cao Yue, Che Wenquan, Yang Wanchen, et al. Novel wideband polarization rotating metasurface element and its application for wideband folded reflectarray[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2118-2127. doi: 10.1109/TAP.2019.2948525
|
[11] |
Zhu H L, Chung K L, Ding Can, et al. Polarization-rotated waveguide antennas for base-station applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1545-1548. doi: 10.1109/LAWP.2017.2648858
|
[12] |
Yang Wanchen, Tam K W, Choi W W, et al. Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6206-6216. doi: 10.1109/TAP.2014.2361130
|
[13] |
Liang Jiajun, Huang Guanlong, Zhao Jianing, et al. Wideband phase-gradient metasurface antenna with focused beams[J]. IEEE Access, 2019, 7: 20767-20772. doi: 10.1109/ACCESS.2019.2898550
|
[14] |
Liu Kaiting, Ge Yuehe, Lin Chengxiu. A compact wideband high-gain metasurface-lens-corrected conical horn antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 457-461. doi: 10.1109/LAWP.2019.2894037
|
[15] |
马宇, 章海锋, 刘婷, 等. 一种波束扫描超材料天线的设计[J]. 强激光与粒子束, 2018, 30:103206. (Ma Yu, Zhang Haifeng, Liu Ting, et al. Design of beam scanning metamaterial antenna[J]. High Power Laser and Particle Beams, 2018, 30: 103206
|
[16] |
Wu Guozhang, Yu Wenqi, Lin Tao, et al. Ultra-wideband RCS reduction based on non-planar coding diffusive metasurface[J]. Materials, 2020, 13(21): 4773. doi: 10.3390/ma13214773
|
[17] |
Liu Shuo, Xu Hexiu, Zhang Haochi, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417. doi: 10.1364/OE.22.013403
|
[18] |
Zhao Jie, Cheng Qiang, Chen Jie, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 2013, 15: 043049. doi: 10.1088/1367-2630/15/4/043049
|
[19] |
Luo Zhangjie, Long Jiang, Chen Xing, et al. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors[J]. Applied Physics Letters, 2016, 109: 071107. doi: 10.1063/1.4961367
|
[20] |
Zhu Bo O, Chen Ke, Jia Nan, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J]. Scientific Reports, 2014, 4: 4971.
|
[21] |
Feng Yijun, Zhu Bo, Chen Ke, et al. Dynamically controlling electromagnetic wave with tunable metasurfaces[C]//Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP). 2015.
|
[22] |
Lv Yanhe, Ding Xiao, Wang Bingzhong, et al. Wideband polarisation-insensitive metasurface with tunable near-field scattering focusing characteristic[J]. Electronics Letters, 2019, 55(14): 776-777. doi: 10.1049/el.2019.1275
|
[23] |
Liu Fu, Tsilipakos O, Pitilakis A, et al. Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions[J]. Physical Review Applied, 2019, 11: 044024. doi: 10.1103/PhysRevApplied.11.044024
|
[24] |
Wu Zhanni, Ra'di Y, Grbic A. Tunable metasurfaces: a polarization rotator design[J]. Physical Review X, 2019, 9: 011036.
|
[25] |
Yoo M, Lim S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 2014, 7: 112204. doi: 10.7567/APEX.7.112204
|
[26] |
Bensafieddine D, Djerfaf F, Chouireb F, et al. Design of tunable microwave transmission lines using metamaterial cells[J]. Applied Physics A, 2017, 123(4): 248. doi: 10.1007/s00339-017-0869-6
|
[27] |
Wu P C, Cai Hong, Gu Yuandong, et al. Dynamic metasurface for broadband electromagnetic modulator in reflection[C]//Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems. 2016: 230-233.
|
[28] |
Odit M, Kapitanova P, Andryieuski A, et al. Experimental demonstration of water based tunable metasurface[J]. Applied Physics Letters, 2016, 109: 011901. doi: 10.1063/1.4955272
|
[29] |
Yang Hujiang, Yu Tianlin, Wang Qingmin, et al. Wave manipulation with magnetically tunable metasurfaces[J]. Scientific Reports, 2017, 7: 5441. doi: 10.1038/s41598-017-05625-1
|
[30] |
赵怿哲, 黄成, 卿安永. 基于液晶的U波段电控移相超材料[J]. 强激光与粒子束, 2019, 31:063001. (Zhao Yizhe, Huang Cheng, Qing Anyong. Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal[J]. High Power Laser and Particle Beams, 2019, 31: 063001
|
[31] |
Yang Xiaoqing, Zhang Di, Wu Shiyue, et al. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution[J]. Scientific Reports, 2017, 7: 3190. doi: 10.1038/s41598-017-03439-9
|
[32] |
Sun Lili, Zhang Hao, Dong Guohua, et al. Dynamically tunable terahertz anomalous refraction and reflection based on graphene metasurfaces[J]. Optics Communications, 2019, 446: 10-15. doi: 10.1016/j.optcom.2019.04.058
|
[33] |
Yao Wei, Tang Linlong, Wang Jun, et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE Photonics Journal, 2018, 10: 4800909.
|
[34] |
Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
|
[35] |
Du Zhiyuan, Hu Bin, Liu Weiguang, et al. Tunable beam deflector by mutual motion of cascaded bilayer metasurfaces[J]. Journal of Optics, 2019, 21: 115101. doi: 10.1088/2040-8986/ab3e7a
|
[36] |
Shang Yuping, Lei Xue, Liao Cheng, et al. Frequency-selective structures with suppressed reflection through passive phase cancellation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1192-1197. doi: 10.1109/TAP.2019.2940495
|
[37] |
Modi A Y, Balanis C A, Birtcher C R, et al. New class of RCS-reduction metasurfaces based on scattering cancellation using array theory[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 298-308. doi: 10.1109/TAP.2018.2878641
|
[38] |
Yu Jun, Jiang Wen, Gong Shuxi. Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1058-1062. doi: 10.1109/LAWP.2020.2988089
|
[39] |
Sharma A, Dwari S, Kanaujia B K, et al. In-band RCS reduction and isolation enhancement of a 24 GHz radar antenna using metamaterial absorber for sensing and automotive radar applications[J]. IEEE Sensors Journal, 2020, 20(21): 13086-13093. doi: 10.1109/JSEN.2020.3002337
|
[40] |
雷雪, 邹义童, 尚玉平, 等. 基于超表面的钝二面角结构后向散射增强设计[J]. 电子元件与材料, 2019, 38(8):99-105. (Lei Xue, Zou Yitong, Shang Yuping, et al. Backscattering enhancement of an obtuse dihedral corner structure through metasurface[J]. Electronic Components and Materials, 2019, 38(8): 99-105
|
[41] |
丰茂昌, 李勇峰, 张介秋, 等. 一种宽角域散射增强超表面的研究[J]. 物理学报, 2018, 67:198101. (Feng Maochang, Li Yongfeng, Zhang Jieqiu, et al. Research of a wide-angle backscattering enhancement metasurface[J]. Acta Physica Sinica, 2018, 67: 198101 doi: 10.7498/aps.67.20181053
|
[42] |
Shang Yuping, Shen Zhongxiang, Feng Keming. Enhancement of backscattering by a conducting cylinder coated with gradient metasurface[J]. Journal of Applied Physics, 2016, 120: 045109. doi: 10.1063/1.4959986
|
[43] |
Shang Yuping, Shen Zhongxiang. Electromagnetic retroreflection augmented by spherical and conical metasurfaces[J]. Journal of Applied Physics, 2017, 122: 205104. doi: 10.1063/1.5004252
|
[44] |
Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
|