Volume 33 Issue 4
May  2021
Turn off MathJax
Article Contents
Wang Sihao, Liao Cheng, Shang Yuping, et al. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33: 043002. doi: 10.11884/HPLPB202133.200331
Citation: Wang Sihao, Liao Cheng, Shang Yuping, et al. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33: 043002. doi: 10.11884/HPLPB202133.200331

Agile design of cross-section enhancement of a conducting plate radar through active metasurface

doi: 10.11884/HPLPB202133.200331
  • Received Date: 2020-12-10
  • Rev Recd Date: 2021-02-25
  • Available Online: 2021-03-11
  • Publish Date: 2021-05-02
  • The design concept of employing the dynamically reconfigurable scattering pattern to enhance radar cross-section is proposed and examined. In combination with varactor loading, a physical unit cell geometry with an embedded bias network for the varactors is utilized to build the metasurface. Biased by an applied direct-current source with voltage gradient, the proposed active metasurface can exhibit electrically tunable reflection phase distributions for either normal or oblique incidence plane wave, so as to achieve flexible redirection of the angle of reflection. As a result, the agile effect for monostatic or bistatic cross-section enhancement is then facilitated. Taking a conducting plate as an example, three different incidence and reflection scenarios are considered for calculation and full-wave simulation. Reconfigurable scattering patterns produced at the operating frequency of 10 GHz by the presented design are observed, which indicates its capability of real-time control of the angle of reflection. In conjunction with an experimental measurement, the effective enhancement of monostatic and bistatic cross-sections are validated.
  • loading
  • [1]
    Shang Yuping, Shen Zhongxiang. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2386-2396. doi: 10.1109/TAP.2017.2677949
    [2]
    Shang Yuping, Xiao Shaoqiu, Shen Zhongxiang. Edge-on backscattering enhancement based on quasi-superdirective reradiation[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 539-542.
    [3]
    He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729
    [4]
    Edries M, Mohamed H A, Hekal S S, et al. A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization[J]. IEEE Access, 2020, 8: 143723-143733. doi: 10.1109/ACCESS.2020.3009904
    [5]
    Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333
    [6]
    Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. On the design of single-layer circuit analog absorber using double-square-loop array[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022-6029. doi: 10.1109/TAP.2013.2280836
    [7]
    强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222. (Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222
    [8]
    Bashiri M, Ghobadi C, Nourinia J, et al. WiMAX, WLAN, and X-band filtering mechanism: simple-structured triple-band frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3245-3248. doi: 10.1109/LAWP.2017.2771265
    [9]
    Esparza N, Alcón P, Herrán L F, et al. Substrate integrated waveguides structures using frequency selective surfaces operating in stop-band (SBFSS-SIW)[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 113-115. doi: 10.1109/LMWC.2016.2517066
    [10]
    Cao Yue, Che Wenquan, Yang Wanchen, et al. Novel wideband polarization rotating metasurface element and its application for wideband folded reflectarray[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2118-2127. doi: 10.1109/TAP.2019.2948525
    [11]
    Zhu H L, Chung K L, Ding Can, et al. Polarization-rotated waveguide antennas for base-station applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1545-1548. doi: 10.1109/LAWP.2017.2648858
    [12]
    Yang Wanchen, Tam K W, Choi W W, et al. Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6206-6216. doi: 10.1109/TAP.2014.2361130
    [13]
    Liang Jiajun, Huang Guanlong, Zhao Jianing, et al. Wideband phase-gradient metasurface antenna with focused beams[J]. IEEE Access, 2019, 7: 20767-20772. doi: 10.1109/ACCESS.2019.2898550
    [14]
    Liu Kaiting, Ge Yuehe, Lin Chengxiu. A compact wideband high-gain metasurface-lens-corrected conical horn antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 457-461. doi: 10.1109/LAWP.2019.2894037
    [15]
    马宇, 章海锋, 刘婷, 等. 一种波束扫描超材料天线的设计[J]. 强激光与粒子束, 2018, 30:103206. (Ma Yu, Zhang Haifeng, Liu Ting, et al. Design of beam scanning metamaterial antenna[J]. High Power Laser and Particle Beams, 2018, 30: 103206
    [16]
    Wu Guozhang, Yu Wenqi, Lin Tao, et al. Ultra-wideband RCS reduction based on non-planar coding diffusive metasurface[J]. Materials, 2020, 13(21): 4773. doi: 10.3390/ma13214773
    [17]
    Liu Shuo, Xu Hexiu, Zhang Haochi, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417. doi: 10.1364/OE.22.013403
    [18]
    Zhao Jie, Cheng Qiang, Chen Jie, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 2013, 15: 043049. doi: 10.1088/1367-2630/15/4/043049
    [19]
    Luo Zhangjie, Long Jiang, Chen Xing, et al. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors[J]. Applied Physics Letters, 2016, 109: 071107. doi: 10.1063/1.4961367
    [20]
    Zhu Bo O, Chen Ke, Jia Nan, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J]. Scientific Reports, 2014, 4: 4971.
    [21]
    Feng Yijun, Zhu Bo, Chen Ke, et al. Dynamically controlling electromagnetic wave with tunable metasurfaces[C]//Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP). 2015.
    [22]
    Lv Yanhe, Ding Xiao, Wang Bingzhong, et al. Wideband polarisation-insensitive metasurface with tunable near-field scattering focusing characteristic[J]. Electronics Letters, 2019, 55(14): 776-777. doi: 10.1049/el.2019.1275
    [23]
    Liu Fu, Tsilipakos O, Pitilakis A, et al. Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions[J]. Physical Review Applied, 2019, 11: 044024. doi: 10.1103/PhysRevApplied.11.044024
    [24]
    Wu Zhanni, Ra'di Y, Grbic A. Tunable metasurfaces: a polarization rotator design[J]. Physical Review X, 2019, 9: 011036.
    [25]
    Yoo M, Lim S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 2014, 7: 112204. doi: 10.7567/APEX.7.112204
    [26]
    Bensafieddine D, Djerfaf F, Chouireb F, et al. Design of tunable microwave transmission lines using metamaterial cells[J]. Applied Physics A, 2017, 123(4): 248. doi: 10.1007/s00339-017-0869-6
    [27]
    Wu P C, Cai Hong, Gu Yuandong, et al. Dynamic metasurface for broadband electromagnetic modulator in reflection[C]//Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems. 2016: 230-233.
    [28]
    Odit M, Kapitanova P, Andryieuski A, et al. Experimental demonstration of water based tunable metasurface[J]. Applied Physics Letters, 2016, 109: 011901. doi: 10.1063/1.4955272
    [29]
    Yang Hujiang, Yu Tianlin, Wang Qingmin, et al. Wave manipulation with magnetically tunable metasurfaces[J]. Scientific Reports, 2017, 7: 5441. doi: 10.1038/s41598-017-05625-1
    [30]
    赵怿哲, 黄成, 卿安永. 基于液晶的U波段电控移相超材料[J]. 强激光与粒子束, 2019, 31:063001. (Zhao Yizhe, Huang Cheng, Qing Anyong. Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal[J]. High Power Laser and Particle Beams, 2019, 31: 063001
    [31]
    Yang Xiaoqing, Zhang Di, Wu Shiyue, et al. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution[J]. Scientific Reports, 2017, 7: 3190. doi: 10.1038/s41598-017-03439-9
    [32]
    Sun Lili, Zhang Hao, Dong Guohua, et al. Dynamically tunable terahertz anomalous refraction and reflection based on graphene metasurfaces[J]. Optics Communications, 2019, 446: 10-15. doi: 10.1016/j.optcom.2019.04.058
    [33]
    Yao Wei, Tang Linlong, Wang Jun, et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE Photonics Journal, 2018, 10: 4800909.
    [34]
    Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
    [35]
    Du Zhiyuan, Hu Bin, Liu Weiguang, et al. Tunable beam deflector by mutual motion of cascaded bilayer metasurfaces[J]. Journal of Optics, 2019, 21: 115101. doi: 10.1088/2040-8986/ab3e7a
    [36]
    Shang Yuping, Lei Xue, Liao Cheng, et al. Frequency-selective structures with suppressed reflection through passive phase cancellation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1192-1197. doi: 10.1109/TAP.2019.2940495
    [37]
    Modi A Y, Balanis C A, Birtcher C R, et al. New class of RCS-reduction metasurfaces based on scattering cancellation using array theory[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 298-308. doi: 10.1109/TAP.2018.2878641
    [38]
    Yu Jun, Jiang Wen, Gong Shuxi. Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1058-1062. doi: 10.1109/LAWP.2020.2988089
    [39]
    Sharma A, Dwari S, Kanaujia B K, et al. In-band RCS reduction and isolation enhancement of a 24 GHz radar antenna using metamaterial absorber for sensing and automotive radar applications[J]. IEEE Sensors Journal, 2020, 20(21): 13086-13093. doi: 10.1109/JSEN.2020.3002337
    [40]
    雷雪, 邹义童, 尚玉平, 等. 基于超表面的钝二面角结构后向散射增强设计[J]. 电子元件与材料, 2019, 38(8):99-105. (Lei Xue, Zou Yitong, Shang Yuping, et al. Backscattering enhancement of an obtuse dihedral corner structure through metasurface[J]. Electronic Components and Materials, 2019, 38(8): 99-105
    [41]
    丰茂昌, 李勇峰, 张介秋, 等. 一种宽角域散射增强超表面的研究[J]. 物理学报, 2018, 67:198101. (Feng Maochang, Li Yongfeng, Zhang Jieqiu, et al. Research of a wide-angle backscattering enhancement metasurface[J]. Acta Physica Sinica, 2018, 67: 198101 doi: 10.7498/aps.67.20181053
    [42]
    Shang Yuping, Shen Zhongxiang, Feng Keming. Enhancement of backscattering by a conducting cylinder coated with gradient metasurface[J]. Journal of Applied Physics, 2016, 120: 045109. doi: 10.1063/1.4959986
    [43]
    Shang Yuping, Shen Zhongxiang. Electromagnetic retroreflection augmented by spherical and conical metasurfaces[J]. Journal of Applied Physics, 2017, 122: 205104. doi: 10.1063/1.5004252
    [44]
    Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1452) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return