Zhu Lin, Feng Guoying, Zhou Hao, et al. Optical fiber dislocation ammonia gas sensor based on self-assembled film[J]. High Power Laser and Particle Beams, 2021, 33: 039002. doi: 10.11884/HPLPB202133.200334
Citation: Zhu Lin, Feng Guoying, Zhou Hao, et al. Optical fiber dislocation ammonia gas sensor based on self-assembled film[J]. High Power Laser and Particle Beams, 2021, 33: 039002. doi: 10.11884/HPLPB202133.200334

Optical fiber dislocation ammonia gas sensor based on self-assembled film

doi: 10.11884/HPLPB202133.200334
  • Received Date: 2020-12-13
  • Rev Recd Date: 2021-03-04
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • This paper presents the ammonia gas sensor of optical fiber dislocation type based on single-walled carbon nanotubes (SWCNTs)-polymer self-assembled composite film. Alone with high-Q resonator, the film has a large number of free carboxyl groups and a large specific surface area, which provides strong interaction between light and the film, as well as high adsorption and selectivity to ammonia. The spectrum from the sensor varies with the effective refractive index affected by the ammonia concentration. In the low concentration range of (10−37)×10−6, the ratio of the spectral change to the ammonia concentration difference (i.e. the sensitivity) is of 13.25 pm/10−6, a detection limit is 3.77×10−6 with good linearity. This work provides an effective method for developing low-concentration and high-selectivity ammonia sensors.
  • [1]
    Malins C, Doyle A, MacCraith B D, et al. Personal ammonia sensor for industrial environments[J]. Journal of Environmental Monitoring, 1999, 1(5): 417-222. doi: 10.1039/a904846d
    [2]
    Liu Xu, Chen Nan, Han Bingqian, et al. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity[J]. Nanoscale, 2015, 7(36): 14872-14880. doi: 10.1039/C5NR03585F
    [3]
    Schmidt F M, Vaittinen O, Metsälä M, et al. Ammonia in breath and emitted from skin[J]. Journal of Breath Research, 2013, 7: 017109. doi: 10.1088/1752-7155/7/1/017109
    [4]
    Timmer B, Olthuis W, van den Berg A. Ammonia sensors and their applications—a review[J]. Sensors and Actuators B: Chemical, 2005, 107(2): 666-677. doi: 10.1016/j.snb.2004.11.054
    [5]
    Renganathan B, Sastikumar D, Gobi G, et al. Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection[J]. Optics & Laser Technology, 2011, 43(8): 1398-1404.
    [6]
    Sharma A L, Kumar K, Deep A. Nanostructured polyaniline films on silicon for sensitive sensing of ammonia[J]. Sensors and Actuators A: Physical, 2013, 198: 107-112. doi: 10.1016/j.sna.2013.04.026
    [7]
    Turner C, Španěl P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS[J]. Physiological Measurement, 2006, 27(4): 321-337. doi: 10.1088/0967-3334/27/4/001
    [8]
    Cao Wenqing, Duan Yixiang. Optical fiber-based evanescent ammonia sensor[J]. Sensors andActuators B: Chemical, 2005, 110(2): 252-259. doi: 10.1016/j.snb.2005.02.015
    [9]
    Khalaf A L, Mohamad F S, Abdul Rahman N, et al. Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite[J]. Optical Materials Express, 2017, 7(6): 1858-1870. doi: 10.1364/OME.7.001858
    [10]
    Zhao Na, Fu Haiwei, Shao Min, et al. High temperature probe sensor with high sensitivity based on Michelson interferometer[J]. Optics Communications, 2015, 343: 131-134. doi: 10.1016/j.optcom.2014.12.012
    [11]
    Huang Ran, Ni Kai, Ma Qifei, et al. Refractometer based on a tapered Mach–Zehnder interferometer with Peanut-Shape structure[J]. Optics and Lasers in Engineering, 2016, 83: 80-82. doi: 10.1016/j.optlaseng.2016.03.011
    [12]
    Liao C R, Hu T Y, Wang D N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing[J]. Optics Express, 2012, 20(20): 22813-22818. doi: 10.1364/OE.20.022813
    [13]
    Feng Weiqiang, Liu Zhengyong, Tam H Y, et al. The pore water pressure sensor based on Sagnac interferometer with polarization-maintaining photonic crystal fiber for the geotechnical engineering[J]. Measurement, 2016, 90: 208-214. doi: 10.1016/j.measurement.2016.04.067
    [14]
    Liao C R, Chen HF, Wang D N. Ultracompact optical fiber sensor for refractive index and high-temperature measurement[J]. Journal of Lightwave Technology, 2014, 32(14): 2531-2535. doi: 10.1109/JLT.2014.2328356
    [15]
    Hu Pengbing, Chen Zhemin, Yang Mei, et al. Highly sensitive liquid-sealed multimode fiber interferometric temperature sensor[J]. Sensors and Actuators A: Physical, 2015, 223: 114-118. doi: 10.1016/j.sna.2015.01.009
    [16]
    Hao Ting, Chiang K S. Graphene-based ammonia-gas sensor using in-fiber Mach–Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2035-2038. doi: 10.1109/LPT.2017.2761981
    [17]
    Fu Haiwei, Wang Qiqi, Ding Jijun, et al. Fe2O3 nanotube coating micro-fiber interferometer for ammonia detection[J]. Sensors and Actuators B: Chemical, 2020, 303: 127186. doi: 10.1016/j.snb.2019.127186
    [18]
    Yu Caibin, Wu Yu, Liu Xiaolei, et al. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide[J]. Sensors and Actuators B: Chemical, 2017, 244: 107-113. doi: 10.1016/j.snb.2016.12.126
    [19]
    Yao Baicheng, Wu Y U, Cheng Yang, et al. All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 2014, 194: 142-148. doi: 10.1016/j.snb.2013.12.085
    [20]
    Gouveia C, Jorge P A S, Baptista J M, et al. Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice[J]. IEEE Photonics Technology Letters, 2011, 23(12): 804-806. doi: 10.1109/LPT.2011.2138125
    [21]
    Yao Qiqi, Meng Hongyun, Wang Wei, et al. Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating[J]. Sensors and Actuators A: Physical, 2014, 209: 73-77. doi: 10.1016/j.sna.2014.01.017
    [22]
    Shen Liguo, Cui Xia, Yu Genying, et al. Thermodynamic assessment of adsorptive fouling with the membranes modified via layer-by-layer self-assembly technique[J]. Journal of Colloid and Interface Science, 2017, 494: 194-203. doi: 10.1016/j.jcis.2017.01.051
    [23]
    Richardson J J, Cui Jiwei, Björnmalm M, et al. Innovation in layer-by-layer assembly[J]. Chemical Reviews, 2016, 116(23): 14828-14867. doi: 10.1021/acs.chemrev.6b00627
    [24]
    Tan Y C, Ji W B, Mamidala V, et al. Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications[J]. Sensors and Actuators B: Chemical, 2014, 196: 260-264. doi: 10.1016/j.snb.2014.01.063
    [25]
    Wang S G, Zhang Qing, Yang D J, et al. Multi-walled carbon nanotube-based gas sensors for NH3 detection[J]. Diamond and Related Materials, 2004, 13(4/8): 1327-1332.
    [26]
    Huang Xinyue, Li Xueming, Yang Jianchun, et al. An in-line Mach–Zehnder interferometer using thin-core fiber for ammonia gas sensing with high sensitivity[J]. Scientific Reports, 2017, 7: 44994. doi: 10.1038/srep44994
    [27]
    Sun Xiaoyan, Chu Dongkai, Dong Xinran, et al. Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching[J]. Optics & Laser Technology, 2016, 77: 11-15.
    [28]
    Kalita A, Hussain S, Hussain Malik A, et al. Vapor phase sensing of ammonia at the sub-ppm level using a perylene diimide thin film device[J]. Journal of Materials Chemistry C, 2015, 3(41): 10767-10774. doi: 10.1039/C5TC02521D
    [29]
    White I M, Fan Xudong. On the performance quantification of resonant refractive index sensors[J]. Optics Express, 2008, 16(2): 1020-1028. doi: 10.1364/OE.16.001020
  • Relative Articles

    [1]Hou Yiran, Wang Yuheng, Wang Xianghui, Zhang Jie, Qi Hongxin. 2.5-D discontinuous Galerkin time-domain method for Maxwell equations[J]. High Power Laser and Particle Beams, 2021, 33(7): 073010. doi: 10.11884/HPLPB202133.210056
    [2]Li Kexun, Ma Jiangjiang, Zhang Zekui, Ma Chen, Jia Kun, Liu Wei, Zhang Jie, Li Jing, Wang Donghong. Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2019, 31(10): 103204. doi: 10.11884/HPLPB201931.190102
    [3]Gu Yu, Yuan Jianqiang, Wang Lingyun, Liu Hongwei, Jiang Ping, Xu Le. Design of fiber system for triggering photoconductive semiconductor switch in MHz repetitive rate[J]. High Power Laser and Particle Beams, 2017, 29(10): 105004. doi: 10.11884/HPLPB201729.160551
    [4]Yang Rui, Li Xiaojie, Yan Honghao, Wang Yang. Influence of initial temperature and carbon source on carbon nanotubes prepared by gaseous detonation[J]. High Power Laser and Particle Beams, 2017, 29(02): 024101. doi: 10.11884/HPLPB201729.160402
    [5]Wang Jiao, Yang Bo, Liu Jun, Cai Guangming, . Experimental studies on phase change characteritics of carbon nanofluids[J]. High Power Laser and Particle Beams, 2015, 27(07): 074102. doi: 10.11884/HPLPB201527.074102
    [6]Yang Bo, Wang Jiao, Liu Jun. Heat transfer enhancement of carbon nanofluids[J]. High Power Laser and Particle Beams, 2014, 26(05): 051003. doi: 10.11884/HPLPB201426.051003
    [7]Zhang Shiqiang, Zhang Zheng, Cai Lei, Qu Pubo, He Minbo. Laser injecting method from free space beam to single-mode fiber using single lens[J]. High Power Laser and Particle Beams, 2014, 26(03): 031006. doi: 10.3788/HPLPB201426.031006
    [8]Zheng Yawei, Xu Weibin, Luo Bingfeng, Guo Yuhui. Sub-control system based on PXIe controller for high intensity proton accelerator[J]. High Power Laser and Particle Beams, 2014, 26(09): 095101. doi: 10.11884/HPLPB201426.095101
    [9]Yang Huan, Yuan Xuesong, Li Kai, Li Xiaoyun, Yan Yang. Design of carbon nanotube cold cathode electro-optical system with mesh grid structure[J]. High Power Laser and Particle Beams, 2014, 26(06): 063023. doi: 10.11884/HPLPB201426.063023
    [10]Xu Weikang, Yuan Xuesong, Yuan Jinsong, Yang Lin. Mesh grid structure on field emission carbon nanotube cold cathodes[J]. High Power Laser and Particle Beams, 2014, 26(12): 124103. doi: 10.11884/HPLPB201426.124103
    [11]Cui Yunkang, Zhang Xiaobing, Lei Wei, Wang Qilong, Di Yunsong, Li Chi, Chen Jing. Study on large current field-emission carbon nanotube cathode[J]. High Power Laser and Particle Beams, 2013, 25(06): 1509-1512. doi: 10.3788/HPLPB20132506.1509
    [12]shen yi, xia liansheng, zhang huang, liu xingguang, liao qingliang. Experimental research on intense pulsed emission of carbon nanotube cathode[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [13]liu fuhua, an yuying, wang qunshu, wang ping, shao bibo, chen shaowu. Effects of pulse Gamma-ray radiation on optical fibers[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [14]sun qilong, wang xintao, lin guoqiang, dai zhimin, lu shanliang, yu tiemin. Electron gun based on photo-field emission of carbon nanotubes irradiated by 532 nm laser[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [15]chen leifeng, ji zhenguo, mi yuhong, mao qi. Effect of interface barrier on carbon nanotube field emission property[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [16]chen ze-xiang, cao gui-chuan, zhang qiang, zhu bing-jin, lin zu-lun. Fabrication of large current density carbon nanotube based field emitters[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [17]luo yong-quan, wang wei-ping, li jian-feng, zhang da-yong, liu hai-tao. Experiment on optical limiting properties of multi-walled carbon nanotubes in water-surfactant suspensions[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [18]wang ke, liu zhen-an, zhao di-xin, guo ya-nan, yin ze-jie. Study of a mixed parallel and serial data transmission in trigger system of Beijing Spectrometer Ⅲ[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [19]gao song, chen jian-guo, lin xiao-dong, lu dan. Analytical solutions of real and imaginary parts of unstable perturbations propagating in optical fibers[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
  • Cited by

    Periodical cited type(1)

    1. 陆杭林,邵来鹏,张帆,唐剑,黎远鹏,王咏梅,胡君辉. 光纤MZI传感器传感机理与传感应用研究进展. 广西师范大学学报(自然科学版). 2022(06): 1-17 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.0 %FULLTEXT: 21.0 %META: 76.0 %META: 76.0 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.1 %India: 0.1 %Japan: 0.2 %Japan: 0.2 %Malaysia: 0.2 %Malaysia: 0.2 %Taiwan, China: 0.2 %Taiwan, China: 0.2 %Tuen Mun San Hui: 0.2 %Tuen Mun San Hui: 0.2 %United States: 0.1 %United States: 0.1 %[]: 1.1 %[]: 1.1 %三明: 0.1 %三明: 0.1 %上海: 4.4 %上海: 4.4 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 7.1 %北京: 7.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南昌: 0.3 %南昌: 0.3 %台州: 0.6 %台州: 0.6 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %宁波: 0.1 %宁波: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %宿州: 0.1 %宿州: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %庆阳: 0.1 %庆阳: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 0.4 %张家口: 0.4 %惠州: 0.4 %惠州: 0.4 %成都: 3.2 %成都: 3.2 %扬州: 0.2 %扬州: 0.2 %揭阳: 0.1 %揭阳: 0.1 %日照: 0.1 %日照: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.3 %沈阳: 0.3 %深圳: 0.7 %深圳: 0.7 %湖州: 0.5 %湖州: 0.5 %漯河: 0.1 %漯河: 0.1 %潮州: 0.1 %潮州: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.4 %秦皇岛: 0.4 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.3 %绵阳: 0.3 %美国伊利诺斯芝加哥: 1.0 %美国伊利诺斯芝加哥: 1.0 %芒廷维尤: 23.5 %芒廷维尤: 23.5 %芝加哥: 0.7 %芝加哥: 0.7 %荆门: 0.1 %荆门: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %萍乡: 0.2 %萍乡: 0.2 %蚌埠: 0.1 %蚌埠: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 36.0 %西宁: 36.0 %西安: 1.1 %西安: 1.1 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.6 %郑州: 2.6 %重庆: 0.7 %重庆: 0.7 %金华: 0.1 %金华: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %香港特别行政区: 0.4 %香港特别行政区: 0.4 %其他其他ChinaIndiaJapanMalaysiaTaiwan, ChinaTuen Mun San HuiUnited States[]三明上海中山临汾丹东保定加利福尼亚州北京十堰南京南昌台州合肥哈尔滨哥伦布大连天津宁波宜昌宣城宿州常州广州庆阳库比蒂诺张家口惠州成都扬州揭阳日照晋城普洱杭州武汉沈阳深圳湖州漯河潮州烟台石家庄福州秦皇岛绍兴绵阳美国伊利诺斯芝加哥芒廷维尤芝加哥荆门莫斯科萍乡蚌埠衢州西宁西安西雅图贵阳运城邯郸郑州重庆金华长春长沙长治香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1244) PDF downloads(50) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return