Song Xiaozong, Zhou Youxin. Impacting dynamics of ultraviolet induced nanoparticle colloid microjet[J]. High Power Laser and Particle Beams, 2016, 28: 064118. doi: 10.11884/HPLPB201628.064118
Citation: Tang Yunfeng, Tan Zhiyuan, Liu Ping, et al. Design of four-module parallel interleaved high power laser driver[J]. High Power Laser and Particle Beams, 2021, 33: 071004. doi: 10.11884/HPLPB202133.200337

Design of four-module parallel interleaved high power laser driver

doi: 10.11884/HPLPB202133.200337
  • Received Date: 2020-12-14
  • Rev Recd Date: 2021-05-11
  • Available Online: 2021-06-23
  • Publish Date: 2021-07-15
  • According to the demand of high power semiconductor laser for high power, low ripple and high reliability constant current driver, a constant current power supply based on four BUCK modules in parallel is designed. The maximum output power is 37.5 kW (250 V×150 A). The conduction time interval of the four modules is T/4 in turn, which weakens the ripple by cancellation between the modules and achieves the output current ripple rate of 0.066%. Using the parallel advantage of FPGA, it can quickly respond to the output protection, and turn off the output within 12.2 μs, so the protection is excellent. The experimental results verify the design, which has been successfully applied in a project.
  • [1]
    黄德修. 半导体激光器及其应用[M]. 北京: 国防工业出版社, 1999.

    Huang Dexiu. Semiconductor lasers and their applications[M]. Beijing: National Defense Industry Press, 1999
    [2]
    Qi Xiaoqiong, Liu Jiaming. Photonic microwave applications of the dynamics of semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1198-1211. doi: 10.1109/JSTQE.2011.2121055
    [3]
    Zhao Qinglin, Li Shu, Cao Ruru, et al. Design of pulse power supply for high-power semiconductor laser diode arrays[J]. IEEE Access, 2019, 7(99): 92805-92812.
    [4]
    Thompson M T, Schlecht M F. High power laser diode driver based on power converter technology[J]. IEEE Transactions on Power Electronics, 1997, 12(1): 46-52. doi: 10.1109/63.554168
    [5]
    周正生, 樊仲维, 冯承勇, 等. 大电流长脉宽LD激光器驱动电源的研制[J]. 激光杂志, 2009, 30(5):14-15. (Zhou Zhengsheng, Fan Zhongwei, Feng Chengyong, et al. Development of high current and long pulse width LD laser driving power supply[J]. Journal of Laser, 2009, 30(5): 14-15 doi: 10.3969/j.issn.0253-2743.2009.05.006
    [6]
    Yue Yubo, Yang Xu, Rui Li. A new type of semiconductor laser power supply[J]. Advanced Materials Research, 2012, 472/475: 3121-3124. doi: 10.4028/www.scientific.net/AMR.472-475.3121
    [7]
    Dong Chuanjie, Huang Hong. Analysis and design of high-current constant-current driver for laser diode bar[C]// IEEE International Conference on Electronics. 2011: 1321-1324.
    [8]
    Zhang Cheng, Zhang Aiwen, Zhou Min, et al. Design of a new-style LD power circuit[C]//IEEE International Conference on Electrical & Control Engineering. 2010: 3555-3557.
    [9]
    周冠军, 张雪松, 蔡军, 等. 高温环境下高功率半导体激光器驱动电源设计[J]. 光电技术应用, 2012, 27(5):1-4. (Zhou Guanjun, Zhang Xuesong, Cai Jun, et al. Design of high power semiconductor laser driving power supply under high temperature environment[J]. Optoelectronic Technology Application, 2012, 27(5): 1-4
    [10]
    王博钰. 半导体激光器电源及相关控制技术的研究[D]. 长春: 长春工业大学, 2010.

    Wang Boyu. Research on semiconductor laser power supply and related control technology[D]. Changchun: Changchun University of Technology, 2010
    [11]
    Yang Jiazhi, Zhou Guoqing, Yu Xinchen, et al. Design and implementation of power supply of high-power diode laser of LiDAR onboard UAV[C]//2011 International Symposium on Image and Data Fusion. 2011: 1-4
    [12]
    曹茹茹, 王德玉, 赵清林, 等. 宽输出电压的半导体激光器驱动电源研究[J]. 强激光与粒子束, 2018, 30:091002. (Cao Ruru, Wang Deyu, Zhao Qinglin, et al. Study on a wide output voltage semiconductor laser driver[J]. High Power Laser and Particle Beam, 2018, 30: 091002 doi: 10.11884/HPLPB201830.170481
    [13]
    Xu Haixia, Bo Li, Wang Youqing. Design of high power semiconductor laser power supply based on ARM[C]//International Conference on Intelligent Human-Machine Systems and Cybernetics. 2015: 505-508
    [14]
    唐秀慧, 马新敏, 朱方顺. 基于软开关及优化算法极点控制的半导体激光电源[J]. 应用激光, 2018, 38(5):852-858. (Tang Xiuhui, Ma Xinmin, Zhu Fangshun. Semiconductor laser power supply based on soft switching and optimal algorithm pole control[J]. Applied Laser, 2018, 38(5): 852-858
    [15]
    李江澜, 兰旭阳, 陈海洋, 等. 大功率半导体激光器用电流源设计[J]. 激光与红外, 2014, 44(3):309-312. (Li Jianglan, Lan Xuyang, Chen Haiyang, et al. Design of current source for high power semiconductor lasers[J]. Laser and Infrared, 2014, 44(3): 309-312 doi: 10.3969/j.issn.1001-5078.2014.03.20
    [16]
    卢凯, 刘百玉, 白永林, 等. 大功率半导体激光器驱动电源的设计[J]. 红外与激光工程, 2012, 41(10):2680-2684. (Lu Kai, Liu Baiyu, Bai Yonglin, et al. Design of driving power supply for high power semiconductor lasers[J]. Infrared and Laser Engineering, 2012, 41(10): 2680-2684 doi: 10.3969/j.issn.1007-2276.2012.10.023
    [17]
    张龙, 陈建生, 高静, 等. 大功率半导体激光器驱动电源及温控系统设计[J]. 红外与激光工程, 2018, 47(10):95-101. (Zhang Long, Chen Jiansheng, Gao Jing, et al. Design of power supply and temperature control system for high power semiconductor lasers[J]. Infrared and Laser Engineering, 2018, 47(10): 95-101
    [18]
    刘谈平. 大功率半导体激光驱动电源关键技术研究[D]. 太原: 中北大学, 2014.

    Liu Tanping. Research on key technology of high power semiconductor laser driving power supply[D]. Taiyuan: Zhongbei University, 2014
  • Relative Articles

    [1]Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 073001. doi: 10.11884/HPLPB202436.240105
    [2]Luo Yong, Pan Qiwen, Yang Shangdong, Gu Zhixing. Preliminary study of lead-bismuth reactor system analysis code development[J]. High Power Laser and Particle Beams, 2023, 35(7): 076003. doi: 10.11884/HPLPB202335.220369
    [3]Li Chen, Han Ruoyu, Geng Jinyue, Yuan Wei, Cao Yuchen, Ouyang Jiting. Collection method for nanoparticles prepared by electric explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075014. doi: 10.11884/HPLPB202234.220007
    [4]Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075002. doi: 10.11884/HPLPB202234.210433
    [5]Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340
    [6]Liu Wei, Duan Xiaoxi, Yang Weiming, Liu Hao, Zhang Huan, Ye Qing, Sun Liang, Wang Zhebin, Jiang Shaoen. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30(5): 052002. doi: 10.11884/HPLPB201830.170478
    [7]Jiang Zhumin, Zhao Wenbo, Wang Jinyu, Sun Wei, Wang Liangzi. Progress of the CORCA-K space-time neutronics simulation code[J]. High Power Laser and Particle Beams, 2017, 29(06): 066003. doi: 10.11884/HPLPB201729.160279
    [8]Yan Honghao, Zhang Xiaofei, Zhao Bibo, Zhao Tiejun, Li Xiaojie. Characteristics of carbon encapsulated copper nanoparticles based on gaseous/condensed explosives detonation[J]. High Power Laser and Particle Beams, 2017, 29(08): 084101. doi: 10.11884/HPLPB201729.170074
    [9]Wang Chao, Li Xiaoyuan, Luo Qing, Ji Fang, Hu Surong, Wei Qilong, Zhang Yunfei, Huang Wen, Tang Guangping, He Jianguo. Dispersion of SiO2 nanoparticles in nonaqueous solvent with surfactant[J]. High Power Laser and Particle Beams, 2015, 27(02): 024155. doi: 10.11884/HPLPB201527.024155
    [10]Song Xiaozong, Gong Jun. Properties of ultraviolet-visible beam propagation in TiO2 nanoparticle colloid[J]. High Power Laser and Particle Beams, 2015, 27(02): 024110. doi: 10.11884/HPLPB201527.024110
    [11]Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008
    [12]Li Xiulong, Wan Yongjian, Xu Qinglan, Zhang Yang, Luo Yinchuan, Zhang Rongzhu. Removal effects of waterjet particle impinging in ductile manner[J]. High Power Laser and Particle Beams, 2014, 26(05): 051007. doi: 10.11884/HPLPB201426.051007
    [13]Ma Xun, Deng Jianjun, Jiang Ping, Yuan Jianqiang, Liu Jinfeng, Liu Hongwei, Wang Lingyun, Li Hongtao. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26(01): 010201. doi: 10.3788/HPLPB201426.010201
    [14]Zhang Lei, Li Zhongguo, Nie Zhongquan, Yang Junyi, Song Yinglin. Study of excited-state absorption of C70/toluene solution using time-resolved non-degenerate pump-probe system[J]. High Power Laser and Particle Beams, 2013, 25(02): 495-499. doi: 10.3788/HPLPB20132502.0495
    [15]Chen Hua, Tang Wenhui, Ran Xianwen, Xu Zhihong, Zhou Hao, Xu Binbin. Three-dimensional smoothed particle hydrodynamics numerical simulation of laser irradiating columnar aluminum target[J]. High Power Laser and Particle Beams, 2012, 24(12): 2802-2806. doi: 10.3788/HPLPB20122412.2802
    [16]Chang Lihua, Li Zuoyou, Xiao Zhengfei, Zou Liyong, Liu Jinhong, Xiong Xueshi. 高速摄影在流体动力学不稳定性研究中的应用[J]. High Power Laser and Particle Beams, 2012, 24(06): 1479-1482. doi: 10.3788/HPLPB20122406.1479
    [17]gong ding, han feng, wang jian-guo. 2D hydrodynamic simulation of GaAs metal-semiconductor-field-effect-transistor[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [18]wang gang-hua, hu xi-jing, kan ming-xuan. Simulation of magnetohydrodynamics for plasma jetting on wire pinch[J]. High Power Laser and Particle Beams, 2003, 15(10): 0- .
    [19]ning cheng, yang zhen hua, ding ning. Process of radiation magnetohydrodynamics in Al wirearray Zpinch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- .
  • Cited by

    Periodical cited type(3)

    1. 宋孝宗,姚统,徐国敏. TiO_2纳米颗粒胶体活化系统设计及流场仿真分析. 兰州理工大学学报. 2020(03): 75-80 .
    2. 徐国敏,戴旭杰,姚统,宋孝宗. 余弦光-液耦合喷嘴参数优化及射流抛光实验. 现代制造工程. 2019(05): 52-56 .
    3. 张航航,宋孝宗. 矩形光液耦合喷嘴的流场特性分析. 制造业自动化. 2019(12): 31-35 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.6 %FULLTEXT: 24.6 %META: 73.6 %META: 73.6 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %China: 0.1 %China: 0.1 %India: 0.1 %India: 0.1 %Turkey: 0.5 %Turkey: 0.5 %United States: 0.3 %United States: 0.3 %[]: 0.1 %[]: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 2.0 %兰州: 2.0 %北京: 19.7 %北京: 19.7 %十堰: 0.1 %十堰: 0.1 %南宁: 0.1 %南宁: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 1.2 %张家口: 1.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %武汉: 0.1 %武汉: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.7 %湖州: 0.7 %漯河: 0.4 %漯河: 0.4 %烟台: 0.5 %烟台: 0.5 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %素叻府: 0.4 %素叻府: 0.4 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芝加哥: 0.7 %芝加哥: 0.7 %莆田: 0.1 %莆田: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 48.3 %西宁: 48.3 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %重庆: 0.1 %重庆: 0.1 %金昌: 0.1 %金昌: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.3 %长治: 0.3 %阳泉: 0.3 %阳泉: 0.3 %其他ChinaIndiaTurkeyUnited States[]上海东莞中山临汾丹东六安兰州北京十堰南宁台北台州哥伦布天津广州张家口昆明普洱杭州武汉深圳湖州漯河烟台石家庄秦皇岛素叻府芒廷维尤芝加哥莆田衡阳西宁西安贵阳运城重庆金昌长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1226) PDF downloads(85) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return