Citation: | Ren Jieru, Wang Jiale, Chen Benzheng, et al. Progress of intense heavy ion beam driven high energy density physics[J]. High Power Laser and Particle Beams, 2021, 33: 012005. doi: 10.11884/HPLPB202133.200339 |
[1] |
Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800. doi: 10.1038/nphys3720
|
[2] |
Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16: 810. doi: 10.1038/s41567-020-0878-9
|
[3] |
Tateno S, Hirose K, Ohishi Y, et al. The structure of iron in Earth’s inner core[J]. Science, 2010, 330: 359-361. doi: 10.1126/science.1194662
|
[4] |
Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
|
[5] |
Kritcher A, Doppner T, Swift D, et al. Probing matter at Gbar pressures at the NIF[J]. High Energy Density Physics, 2014, 10: 27-34. doi: 10.1016/j.hedp.2013.11.002
|
[6] |
Hall C A. Isentropic compression experiments on the Sandia Z accelerator[J]. Physics of Plasmas, 2000, 7: 2069-2075. doi: 10.1063/1.874029
|
[7] |
Hall C, Asay J, Knudson M, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72: 3587-3595. doi: 10.1063/1.1394178
|
[8] |
Branitsky A V, Fedulov M V, Grabovsky E V, et al. Z-pinch implosion for ICF physics study on Angara-5-1[J]. AIP Conference Proceedings, 1997, 40: 125.
|
[9] |
张思群, 王昆仑, 李晶, 等. 聚龙一号丝阵负载Z箍缩硬X射线能谱测量[J]. 强激光与粒子束, 2018, 30:105004. (Zhang Siqun, Wang Kunlun, Li Jing, et al. Measurement of hard X-ray spectrum during wire array implosion on PTS[J]. High Power Laser and Particle Beams, 2018, 30: 105004 doi: 10.11884/HPLPB201830.180183
|
[10] |
赵永涛, 肖国青, 李福利. 基于现代加速器的惯性约束聚变物理研究现状及发展[J]. 物理, 2016, 45:98-107. (Zhao Yongtao, Xiao Guoqing, Li Fuli. The physics of inertial confinement fusion based on modern accelerators: status and perspectives[J]. Physics, 2016, 45: 98-107 doi: 10.7693/wl20160204
|
[11] |
Schoenberg K, Bagnoud V, Blazevic A, et al. High-energy-density-science capabilities at the Facility for Antiproton and Ion Research[J]. Physics of Plasmas, 2020, 27: 043103. doi: 10.1063/1.5134846
|
[12] |
Ni P, Hoffmann D, Kulish M, et al. Pyrometric system for temperature measurements of HED matter generated by intense heavy ion beams[J]. Journal de Physique IV, 2006, 133: 977-980.
|
[13] |
Mintsev V, Kim V, Lomonosov I, et al. Non-ideal plasma and early experiments at FAIR: HIHEX-heavy ion heating and expansion[J]. Plasma of Physics, 2016, 56: 281-285. doi: 10.1002/ctpp.201500105
|
[14] |
The GSI Helmholtzzentrum für Schwerionenforschung. FAIR — The Universe in the Lab[EB/OL]. https://www.gsi.de/en/researchaccelerators/fair.htm.
|
[15] |
Institute of Modern Physics, CAS. The High Intensity Heavy-ion Accelerator Facility[EB/OL]. http://hiaf.impcas.ac.cn/.
|
[16] |
Tahir N, Deutsch C, Fortov V, et al. Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt[J]. Physical Review Letters, 2005, 95: 035001. doi: 10.1103/PhysRevLett.95.035001
|
[17] |
Tahir N A, Shutov A, Piriz A R, et al. Application of intense ion beams to planetary physics research at the Facility for Antiprotons and Ion Research facility[J]. Plasma of Physics, 2019, 59: e201800135. doi: 10.1002/ctpp.201800135
|
[18] |
Cheng R, Zhou X, Wang Y, R, et al. Energy loss of protons in hydrogen plasma[J]. Laser and Particle Beams, 2018, 36(1): 98-104. doi: 10.1017/S0263034618000010
|
[19] |
赵永涛, 张子民, 程锐, 等. 基于HIAF装置的高能量密度物理研究[J]. 中国科学: 物理学力学天文学, 2020, 50:112004. (Zhao Yongtao, Zhang Zimin, Cheng Rui, et al. High-energy-density physics based on HIAF[J]. Sci Sin-Phys Mech Astron, 2020, 50: 112004 doi: 10.1360/SSPMA-2020-0275
|
[20] |
Seidl P A, Barnard J J, Feinberg E, et al. Irradiation of materials with short, intense ion pulses at NDCX-II[J]. Laser and Particle Beams, 2017, 35(2): 373-378. doi: 10.1017/S0263034617000295
|
[21] |
Stepanov A D, Barnard J J, Friedman A et al. , Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment-II[J]. Matter and Radiation at Extremes, 2018, 3: 78. doi: 10.1016/j.mre.2018.01.001
|
[22] |
Kawata S, Karino T, Ogoyski A I. Review of heavy-ion inertial fusion physics[J]. Matter and Radiation at Extremes, 2016, 1, 89.
|
[23] |
Sharkov B, Hoffmann D, Golubev A A, et al. High energy density physics with intense ion beams[J]. Matter and Radiation at Extremes, 2016, 1: 28-47. doi: 10.1016/j.mre.2016.01.002
|
[24] |
Ingo Hofmann. Review of accelerator driven heavy ion nuclear fusion[J]. Matter and Radiation at Extremes, 2018, 3: 1. doi: 10.1016/j.mre.2017.12.001
|
[25] |
Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004. doi: 10.1103/PhysRevLett.91.125004
|
[26] |
Yuan Ping, Heather D, Whitley, et al. Heat-release equation of state and thermal conductivity of warm dense carbon by proton differential heating[J]. Physical Review E, 2019, 100: 043204. doi: 10.1103/PhysRevE.100.043204
|
[27] |
Burkart F, Schmidt R, Raginel V, et al. Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN[J]. Journal of applied physics, 2015, 118: 055902. doi: 10.1063/1.4927721
|
[28] |
Kim J, Qiao B, McGuffey C, et al. Self-consistent simulation of transport and energy deposition of intense laser-accelerated proton beams in solid-density matter[J]. Physical Review Letters, 2015, 115: 054801. doi: 10.1103/PhysRevLett.115.054801
|
[29] |
Wu D, He X T, Yu W, et al. Monte Carlo approach to calculate ionization dynamics of hot solid density plasmas within particle-in-cell simulations[J]. Physical Review E, 2017, 95: 023208. doi: 10.1103/PhysRevE.95.023208
|
[30] |
Wu D, He X T, Yu W, et al. Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations[J]. Physical Review E, 2017, 95: 023207. doi: 10.1103/PhysRevE.95.023207
|
[31] |
Wu D, Yu W, Fritzsche S, et al. High-order implicit particle-in-cell method for plasma simulations at solid densities[J]. Physical Review E, 2019, 100: 013207. doi: 10.1103/PhysRevE.100.013207
|
[32] |
Wu D, Yu W, Zhao Y, et al. Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials[J]. Physical Review E, 2019, 100: 013208. doi: 10.1103/PhysRevE.100.013208
|
[33] |
Zhang Lin, Zhao Yongtao, Ren Jieru, et al. Warm-dense-matter state of iron generated by intense heavy-ion beams[J]. IEEE Trans Plasma Science, 2019, 47(1): 853-857. doi: 10.1109/TPS.2018.2857798
|
[34] |
Ren Jieru, Zhao Yongtao, Cheng Rui, et al. Hydrodynamic response of solid target heated by heavy ion beams from future facility HIAF[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2017, 406: 703-707. doi: https://doi.org/10.1016/j.nimb.2017.03.018
|
[35] |
Zhang Lin, Zhao Yongtap, Ren Jieru, et al. Two dimensional hydrodynamic simulations of metal targets under irradiation of intense proton beams: Effects of target materials[J]. Physics of Plasmas, 2018, 25: 113108. doi: 10.1063/1.5045585
|
[36] |
Zhang Ya, Wei Jiang. Enhancement of valley polarization in graphene with an irradiating charged particle[J]. Physics of Plasmas, 2019, 26: 012102. doi: 10.1063/1.5070085
|
[37] |
Merrill F, Harmon F, Hunt A, et al. Electron radiography[J]. Nuclear Instruments and Methods in Physics Research B, 2007, 261: 382-386. doi: 10.1016/j.nimb.2007.04.127
|
[38] |
Merrill F E, Goett J, Gibbs J W, et al. Demonstration of transmission high energy electron microscopy[J]. Applied Physical Letters, 2018, 112: 144103. doi: 10.1063/1.5011198
|
[39] |
Zhao Y, Zhang Z, Gai W, et al. High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC[J]. Laser and Particle Beams, 2016, 34(2): 338-342. doi: 10.1017/S0263034616000124
|
[40] |
Zhou Zheng, Du Yingchao, Cao Shuchun, et al. Experiments on bright-field and darkfield high-energy electron imaging with thick target material[J]. Physical Review Accelerations and Beams, 2018, 21: 074701. doi: 10.1103/PhysRevAccelBeams.21.074701
|
[41] |
Zhou Zheng, Fang Yu, Chen Han, et al. Visualizing the melting processes in ultrashort intense laser triggered gold mesh with high energy electron radiography[J]. Matter and Radiation at Extremes, 2019, 4: 065402. doi: 10.1063/1.5109855
|
[42] |
Li Chikang, Petrasso R D. Fokker-Planck equation for moderately coupled plasmas[J]. Physical Review Letters, 1993, 70(20): 3063. doi: 10.1103/PhysRevLett.70.3063
|
[43] |
Maynard G and Deutsch C. Born random phase approximation for ion stopping in an arbitrarily degenerate electron fluid[J]. Journal de Physique, 1985, 46(7): 1113-1122. doi: 10.1051/jphys:019850046070111300
|
[44] |
Bethe H. Zur theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Annalen der Physik, 1930, 397(3): 325-400. doi: 10.1002/andp.19303970303
|
[45] |
Bloch F. Zur Bremsung rasch beweg Terteilchen beim Durchgang durch Materie[J]. Annalen der Physik, 1933, 408(3): 285-320. doi: 10.1002/andp.19334080303
|
[46] |
Ding Y H, White A J, Hu S X, et al. Ab initio studies on the stopping power of warm dense matter with time-dependent orbital-free density functional theory[J]. Physical Review Letters, 2018, 121: 145001. doi: 10.1103/PhysRevLett.121.145001
|
[47] |
Peter T, Meyer-ter-Vehn J. Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power[J]. Physical Review A, 1991, 43: 1998-2014. doi: 10.1103/PhysRevA.43.1998
|
[48] |
Deutsch C, Maynard G, Chabot M, et al. Ion stopping in dense plasma target for high energy density physics[J]. The Open Plasma Physics Journal, 2010, 3(1).
|
[49] |
Xu Ge, Barriga-Carrasco M D, Blazevic A, et al. Determination of hydrogen density by swift heavy ions[J]. Physical Review Letters, 2017, 119: 204801. doi: 10.1103/PhysRevLett.119.204801
|
[50] |
Cayzac W, Bagnoud W, Basko M M, et al. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities[J]. Physical Review E, 2015, 92: 053109. doi: 10.1103/PhysRevE.92.053109
|
[51] |
Morales R, Barriga-Carrasco M D, Casas D. Instantaneous charge state of uranium projectiles in fully ionized plasmas from energy loss experiments[J]. Physics of Plasmas, 2017, 24: 042703. doi: 10.1063/1.4979132
|
[52] |
Loisch G, Xu G, Blazevic A, et al. Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping[J]. Physics of Plasmas, 2015, 22: 053502. doi: 10.1063/1.4919851
|
[53] |
Rosmej O N, Blazevic A, Korostiy S, et al. Charge state and stopping dynamics of fast heavy ions in dense matter[J]. Physical Review A, 2015, 72: 052901.
|
[54] |
Braenzel J, Barriga-Carrasco M D, Morales R, et al. Charge-transfer processes in warm dense matter: Selective spectral filtering for laser-accelerated ion beams[J]. Physical Review Letters, 2018, 120: 184801. doi: 10.1103/PhysRevLett.120.184801
|
[55] |
Chen S N, Atzeni S, Gangolf T, et al. Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas[J]. Scientific Reports, 2018, 8(1): 14586. doi: 10.1038/s41598-018-32726-2
|
[56] |
Chou Shaowei, Xu Jia, Khrennikov K, et al. Collective deceleration of laser-driven electron bunches[J]. Physical Review Letters, 2016, 117: 144801. doi: 10.1103/PhysRevLett.117.144801
|
[57] |
Honda M, Meyer-ter-Vehn J, Pukhov A. Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition[J]. Physical Review Letters, 2000, 85(10): 2128. doi: 10.1103/PhysRevLett.85.2128
|
[58] |
Tatarakis M, Beg F N, Clark E L, et al. Propagation instabilities of high-intensity laser-produced electron beams[J]. Physical Review Letters, 2003, 90: 175001. doi: 10.1103/PhysRevLett.90.175001
|
[59] |
Vauzour B, Debayle A, Vaisseau X, et al. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas[J]. Physics of Plasmas, 2014, 21: 033101. doi: 10.1063/1.4867187
|
[60] |
Cayzac W, Frank A, Ortner A, et al. Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter[J]. Nature Communications, 2017, 8: 15693. doi: 10.1038/ncomms15693
|
[61] |
Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 2015, 114: 215002. doi: 10.1103/PhysRevLett.114.215002
|
[62] |
Frenje J A, Florido R, Mancini R, et al. Experimental validation of low-Z ion-stopping formalisms around the Bragg peak in high-energy-density plasmas[J]. Physical Review Letters, 2019, 122: 015002. doi: 10.1103/PhysRevLett.122.015002
|
[63] |
Chen Yanhong, Cheng Rui, Zhang Min, et al. Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss[J]. Acta Physica Sinica, 2018(4):83-89.
|
[64] |
Zhao Y T, Zhang Y N, Cheng R, et al. Significant contribution of projectile excited states to the stopping of slow helium ions in hydrogen plasma[DB/OL]. 2020, arXiv: 2006.01380.
|
[65] |
Chen B Z, Wu D, Ren J R, et al. Transport of intense particle beams in large-scale plasmas[J]. Physical Review E, 2020, 101: 051203. doi: 10.1103/PhysRevE.101.051203
|
[66] |
Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5
|
[67] |
Ren Jieru, Zhao Yongtao, Wei Wenqing, et al. Experimental scheme for investigation of stopping and fusion reactions initiated by laser-accelerated proton beams in a dense boron plasma[R]. GSI Annual Scientific Reports, 2020.
|