Volume 33 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Liu Yawei, Zhou Zikai, Wang Sen, et al. Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode[J]. High Power Laser and Particle Beams, 2021, 33: 065008. doi: 10.11884/HPLPB202133.210020
Citation: Liu Yawei, Zhou Zikai, Wang Sen, et al. Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode[J]. High Power Laser and Particle Beams, 2021, 33: 065008. doi: 10.11884/HPLPB202133.210020

Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode

doi: 10.11884/HPLPB202133.210020
  • Received Date: 2021-01-18
  • Rev Recd Date: 2021-05-29
  • Available Online: 2021-06-10
  • Publish Date: 2021-06-15
  • In this paper, a nanosecond pulse power supply is employed to excite the gas-liquid discharge in atmospheric air, and the discharge characteristics, plasma characteristics and the composition of activated water under different pulse parameters are studied. The results show that the discharge consists of three stages in one pulse period, among which the two discharges that occur during the pulse duration and the falling edge are stronger, and the discharge on the rising edge is weaker. When the pulse voltage increases, the discharge current, average power, luminous intensity and spectra intensity all gradually increase. When the frequency increases, the discharge current is almost unchanged, but the power increases significantly, the discharge luminous and spectra intensity also increase. The increase of the voltage rising edge time will weaken the discharge intensity, and the corresponding luminous intensity and spectra intensity will be weakened. The increase of the voltage falling edge enhances the discharge, and the luminous intensity and emission spectra intensity increase. When the pulse voltage, frequency and falling edge time increase, the concentration of H2O2, ${\rm{NO}}_2^ - $ and ${\rm{NO}}_3^ - $ gradually increases. The increase of the rising edge time results in the decrease of the three active species concentrations. These results are helpful to understand the mechanisms of gas-liquid discharge characteristics under different conditions, so as to control plasma and solution activity, which will promote further practical application of nanosecond pulse gas-liquid discharge.
  • loading
  • [1]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [2]
    戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [3]
    孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究——意义、挑战与新进展[J]. 高电压技术, 2014, 40(10):2956-2965. (Kong Gangyu, Liu Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965
    [4]
    侯世英, 曾鹏, 刘坤, 等. 单介质与双介质结构介质阻挡放电水处理性能的比较[J]. 高电压技术, 2012, 38(7):1562-1567. (Hou Shiying, Zeng Peng, Liu Kun, et al. Comparison of water treatment performance employ dielectric barrier discharge in single and double dielectric structure[J]. High Voltage Engineering, 2012, 38(7): 1562-1567
    [5]
    Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Plasma-activated water: generation, origin of reactive species and biological applications[J]. Journal of Physics D: Applied Physics, 2020, 53: 303001. doi: 10.1088/1361-6463/ab81cf
    [6]
    Bradu C, Kutasi K, Magureanu M, et al. Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture[J]. Journal of Physics D: Applied Physics, 2020, 53: 223001. doi: 10.1088/1361-6463/ab795a
    [7]
    Hoeben W F L M, van Ooij P P, Schram D C, et al. On the possibilities of straightforward characterization of plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2019, 39(3): 597-626. doi: 10.1007/s11090-019-09976-7
    [8]
    Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Microplasma bubbles: reactive vehicles for biofilm dispersal[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20660-20669.
    [9]
    Hefny M M, Pattyn C, Lukes P, et al. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions[J]. Journal of Physics D: Applied Physics, 2016, 49: 404002. doi: 10.1088/0022-3727/49/40/404002
    [10]
    顾建伟, 章程, 王瑞雪, 等. 不同条件下大气压脉冲弥散放电特性[J]. 强激光与粒子束, 2016, 28:015023. (Gu Jianwei, Zhang Cheng, Wang Ruixue, et al. Characteristics of pulsed diffuse discharges under different conditions in atmospheric air[J]. High Power Laser and Particle Beams, 2016, 28: 015023 doi: 10.11884/HPLPB201628.015023
    [11]
    姜慧, 章程, 邵涛, 等. 纳秒脉冲表面介质阻挡放电特性实验研究[J]. 强激光与粒子束, 2012, 24(3):592-596. (Jiang Hui, Zhang Cheng, Shao Tao, et al. Experimental study on characteristics of nanosecond-pulse surface dielectric barrier discharge[J]. High Power Laser and Particle Beams, 2012, 24(3): 592-596 doi: 10.3788/HPLPB20122403.0592
    [12]
    Wang Sen, Yang Dezheng, Zhou Rusen, et al. Mode transition and plasma characteristics of nanosecond pulse gas-liquid discharge: effect of grounding configuration[J]. Plasma Processes and Polymer, 2020, 17: 1900146. doi: 10.1002/ppap.201900146
    [13]
    王琪, 王萌, 王珏, 等. 纳秒脉冲下变压器油两相流注放电仿真研究[J]. 强激光与粒子束, 2020, 32:025011. (Wang Qi, Wang Meng, Wang Jue, et al. Two-phase streamer characteristics in transformer oil under nanosecond impulses voltages[J]. High Power Laser and Particle Beams, 2020, 32: 025011 doi: 10.11884/HPLPB202032.190370
    [14]
    Brandt S, Schütz A, Klute F D, et al. Dielectric barrier discharges applied for optical spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 123: 6-32. doi: 10.1016/j.sab.2016.07.001
    [15]
    Zhang Shuai, Wang Wenchun, Jiang Pengchao, et al. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge[J]. Journal of Applied Physics, 2013, 114: 163301. doi: 10.1063/1.4825053
    [16]
    Shao Tao, Long Kaihua, Zhang Cheng, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2008, 41: 215203. doi: 10.1088/0022-3727/41/21/215203
    [17]
    Zhou Xiongfeng, Liang Jianping, Zhao Zilu, et al. Ultra-high synergetic intensity for humic acid removal by coupling bubble discharge with activated carbon[J]. Journal of Hazardous Materials, 2021, 403: 123626. doi: 10.1016/j.jhazmat.2020.123626
    [18]
    Wandell R J, Wang Huihui, Bulusu R K M, et al. Formation of nitrogen oxides by nanosecond pulsed plasma discharges in gas–liquid reactors[J]. Plasma Chemistry and Plasma Processing, 2019, 39(3): 643-666. doi: 10.1007/s11090-019-09981-w
    [19]
    Zhou Xiongfeng, Wang Wenchun, Yang Dezheng, et al. Controlling of reactive species in atmospheric Ar bubble discharge by adding N2/O2a[J]. Plasma Processes and Polymer, 2019, 16: 1800124. doi: 10.1002/ppap.201800124
    [20]
    Bulusu R K M, Wandell R J, Gallan R O, et al. Nitric oxide scavenging of hydroxyl radicals in a nanosecond pulsed plasma discharge gas–liquid reactor[J]. Journal of Physics D: Applied Physics, 2019, 52: 504002. doi: 10.1088/1361-6463/ab431a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1020) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return