Volume 33 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Zhuang Yue, Liu Feng, Chu Haijing, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33: 065017. doi: 10.11884/HPLPB202133.210021
Citation: Zhuang Yue, Liu Feng, Chu Haijing, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33: 065017. doi: 10.11884/HPLPB202133.210021

Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage

doi: 10.11884/HPLPB202133.210021
  • Received Date: 2021-01-18
  • Rev Recd Date: 2021-05-29
  • Available Online: 2021-06-11
  • Publish Date: 2021-06-15
  • To improve the effect of plasma on the surface modification of polymer materials and optimize the hydrophilic treatment conditions, the hydrophilic modification of polypropylene (PP) by AC and nanosecond pulse argon dielectric barrier discharge (DBD) was studied. The discharge characteristics of AC DBD and nanosecond pulse DBD were systematically compared by using electrical and optical diagnostic.The results show that the DBD excited by nanosecond power supply has higher instantaneous discharge power, better discharge uniformity and higher energy efficiency. The optimal content of H2O in hydrophilic treatment of PP was determined by measuring the intensity of OH. The hydrophilic modification of PP was carried out by using DBD driven by AC and nanosecond pulse power supply, respectively. The water contact angle of PP was measured under different conditions. The surface physical morphology and chemical composition of PP were analyzed by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR).The result shows that, after DBD treatment, the water contact angle of PP surface was obviously reduced, the surface roughness increased significantly, and the number of hydrophilic oxygen-containing groups, hydroxyl (−OH) and carbonyl groups (C=O), increased significantly. Compared with the AC power supply treatment, the modification effect of nanosecond pulse DBD treatment is obviously better, by which the water contact angle of the treated material surface is about 5° lower and the surface roughness is larger. In addition, the water contact angle of PP was further reduced about 4° and the surface roughness was significantly improved with the addition of water vapor. The results have significant value for optimizing the experimental conditions and treatment effect of surface modification of DBD polymer materials.
  • loading
  • [1]
    Zille A, Oliveira F R, Souto A P. Plasma treatment in textile industry[J]. Plasma Processes and Polymers, 2015, 12(2): 98-131. doi: 10.1002/ppap.201400052
    [2]
    Himma N F, Anisah S, Prasetya N, et al. Advances in preparation, modification, and application of polypropylene membrane[J]. Journal of Polymer Engineering, 2016, 36(4): 329-362. doi: 10.1515/polyeng-2015-0112
    [3]
    叶润峰, 裴家耀, 郑明胜, 等. 高介电聚丙烯基纳米复合薄膜介电及储能性能抗老化特性[J]. 电工技术学报, 2020, 35(16):3529-3538. (Ye Runfeng, Pei Jiayao, Zheng Mingsheng, et al. Anti-aging characteristics of dielectric and energy storage of high dielectric polypropylene based nanocomposite films[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3529-3538
    [4]
    李盛涛, 谢东日, 闵道敏. 聚丙烯/Al2O3纳米复合介质直流击穿特性与电荷输运仿真研究[J]. 中国电机工程学报, 2019, 39(20):6122-6130. (Li Shengtao, Xie Dongri, Min Daomin. Numerical simulation on space charge transport and DC breakdown properties of polypropylene/Al2O3 nanocomposites[J]. Proceedings of the CSEE, 2019, 39(20): 6122-6130
    [5]
    迟晓红, 程璐, 刘文凤, 等. 聚丙烯基复合介质的结晶结构调控与性能提升[J]. 高电压技术, 2019, 45(7):2249-2256. (Chi Xiaohong, Cheng Lu, Liu Wenfeng, et al. Crystalline modification and property improvement of polypropylene-based composites[J]. High Voltage Engineering, 2019, 45(7): 2249-2256
    [6]
    王婷婷, 章程, 张福增, 等. 氧含量对大气压等离子体薄膜沉积提高环氧树脂沿面耐压的影响[J]. 高电压技术, 2020, 46(10):3708-3714. (Wang Tingting, Zhang Cheng, Zhang Fuzeng, et al. Effect of oxygen concentration on improvement of surface pressure resistance of epoxy resin by atmospheric pressure plasma deposition[J]. High Voltage Engineering, 2020, 46(10): 3708-3714
    [7]
    胡多, 任成燕, 章程, 等. 等离子体射流处理对聚全氟乙丙烯薄膜沿面绝缘特性的影响研究[J]. 中国电机工程学报, 2019, 39(15):4633-4640. (Hu Duo, Ren Chengyan, Zhang Cheng, et al. Effect of deposited film on the surface insulation characteristics of FEP material by atmospheric pressure plasma jet[J]. Proceedings of the CSEE, 2019, 39(15): 4633-4640
    [8]
    Wardani A K, Ariono D, Subagjo, et al. Hydrophilic modification of polypropylene ultrafiltration membrane by air-assisted polydopamine coating[J]. Polymers for Advanced Technologies, 2019, 30(4): 1148-1155. doi: 10.1002/pat.4549
    [9]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [10]
    张迅, 曾华荣, 田承越, 等. 大气压等离子体制备超疏水表面及其防冰抑霜研究[J]. 电工技术学报, 2019, 34(24):5289-5296. (Zhang Xun, Zeng Huarong, Tian Chengyue, et al. Super-hydrophobic surface prepared by atmospheric-pressure plasma and its anti-icing, anti-frosting performance[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5289-5296
    [11]
    储海靖, 刘峰, 庄越, 等. 水蒸气添加对纳秒脉冲激励氩气DBD放电特性的影响[J]. 高电压技术, 2021, 47(3):885-893. (Chu Haijing, Liu Feng, Zhuang Yue, et al. Influence of H2O addition on discharge characteristics of nanosecond pulsed Ar dielectric barrier discharge[J]. High Voltage Engineering, 2021, 47(3): 885-893
    [12]
    张兴涛, 吴广宁, 杨雁, 等. 介质阻挡放电等离子体处理对聚酰亚胺表面放电的影响[J]. 高电压技术, 2018, 44(9):3097-3104. (Zhang Xingtao, Wu Guangning, Yang Yan, et al. Influence of dielectric barrier discharge plasma treatment on the surface discharge of polyimide film[J]. High Voltage Engineering, 2018, 44(9): 3097-3104
    [13]
    Van Deynse A, De Geyter N, Leys C, et al. Influence of water vapor addition on the surface modification of polyethylene in an argon dielectric barrier discharge[J]. Plasma Processes and Polymers, 2014, 11(2): 117-125. doi: 10.1002/ppap.201300088
    [14]
    Collette S, Dufour T, Reniers F. Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch[J]. Plasma Sources Science and Technology, 2016, 25: 025014. doi: 10.1088/0963-0252/25/2/025014
    [15]
    Liu K, Lei J, Zheng Z, et al. The hydrophilicity improvement of polytetrafluoroethylene by Ar plasma jet: the relationship of hydrophilicity, ambient humidity and plasma parameters[J]. Applied Surface Science, 2018, 458: 183-190. doi: 10.1016/j.apsusc.2018.07.061
    [16]
    Kehrer M, Duchoslav J, Hinterreiter A, et al. Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures[J]. Surface and Coatings Technology, 2020, 384: 125170. doi: 10.1016/j.surfcoat.2019.125170
    [17]
    饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001. (Rao Junfeng, Li Chengjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001 doi: 10.11884/HPLPB201931.190005
    [18]
    李家强, 黄懿赟, 潘圣民, 等. 多级磁阱装置脉冲电源系统研制[J]. 强激光与粒子束, 2019, 31:065002. (Li Jiaqiang, Huang Yiyun, Pan Shengmin, et al. Development of pulse power supply system for multi-stage magnetic trap[J]. High Power Laser and Particle Beams, 2019, 31: 065002 doi: 10.11884/HPLPB201931.180270
    [19]
    章程, 邵涛, 于洋, 等. 重复频率纳秒脉冲介质阻挡放电对聚对苯二甲酸乙二酯表面改性[J]. 强激光与粒子束, 2010, 22(3):539-544. (Zhang Cheng, Shao Tao, Yu Yang, et al. Surface modification of polyethylene terephthalate films using dielectric barrier discharge driven by repetitive nanosecond pulses[J]. High Power Laser and Particle Beams, 2010, 22(3): 539-544 doi: 10.3788/HPLPB20102203.0539
    [20]
    章程, 许家雨, 邵涛, 等. 纳秒脉冲放电对聚对苯二甲酸乙二酯憎水改性[J]. 强激光与粒子束, 2014, 26:045020. (Zhang Cheng, Xu Jiayu, Shao Tao, et al. Hydrophobic modification of polyethylene terephthalate using nanosecond-pulse dielectric barrier discharge[J]. High Power Laser and Particle Beams, 2014, 26: 045020 doi: 10.11884/HPLPB201426.045020
    [21]
    Shao Tao, Zhang Cheng, Long Kaihua, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air[J]. Applied Surface Science, 2010, 256(12): 3888-3894. doi: 10.1016/j.apsusc.2010.01.045
    [22]
    Liu Yunfei, Su Chunqiang, Ren Xiang, et al. Experimental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge in atmospheric air[J]. Applied surface science, 2014, 313: 53-59. doi: 10.1016/j.apsusc.2014.05.129
    [23]
    Yang Dezheng, Wang Wenchun, Zhang Shuai, et al. Atmospheric air homogenous DBD plasma excited by bipolar nanosecond pulse used for improving the hydrophilic property of polypropylene[J]. EPL (Europhysics Letters), 2013, 102: 65001. doi: 10.1209/0295-5075/102/65001
    [24]
    Yuan Hao, Wang Wenchun, Yang Dezheng, et al. Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19: 125401. doi: 10.1088/2058-6272/aa8766
    [25]
    Yuan Hao, Wang Wenchun, Yang Dezheng, et al. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse[J]. Surface and Coatings Technology, 2018, 344: 614-620. doi: 10.1016/j.surfcoat.2018.03.057
    [26]
    苗传润, 刘峰, 王乾, 等. 电极长度对纳秒脉冲同轴介质阻挡放电特性的影响[J]. 高电压技术, 2019, 45(6):1945-1954. (Miao Chuanrun, Liu Feng, Wang Qian, et al. Influence of electrode length on characteristics of coaxial dielectric barrier discharge driven by nanosecond pulsed power supply[J]. High Voltage Engineering, 2019, 45(6): 1945-1954
    [27]
    Dilecce G, De Benedictis S. Laser diagnostics of high-pressure discharges: laser induced fluorescence detection of OH in He/Ar–H2O dielectric barrier discharges[J]. Plasma Physics and Controlled Fusion, 2011, 53: 124006. doi: 10.1088/0741-3335/53/12/124006
    [28]
    Mansuroglu D, Uzun-Kaymak I U. Argon and nitrogen plasma modified polypropylene: surface characterization along with the optical emission results[J]. Surface and Coatings Technology, 2019, 358: 551-559. doi: 10.1016/j.surfcoat.2018.11.086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1016) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return