Volume 33 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Tan Yulian, Wu Fengjun, Wang Xiaojun, et al. Design and implementation of module fault interlock and protection system of HIAF-BRing power supply prototype[J]. High Power Laser and Particle Beams, 2021, 33: 074002. doi: 10.11884/HPLPB202133.210034
Citation: Tan Yulian, Wu Fengjun, Wang Xiaojun, et al. Design and implementation of module fault interlock and protection system of HIAF-BRing power supply prototype[J]. High Power Laser and Particle Beams, 2021, 33: 074002. doi: 10.11884/HPLPB202133.210034

Design and implementation of module fault interlock and protection system of HIAF-BRing power supply prototype

doi: 10.11884/HPLPB202133.210034
  • Received Date: 2021-01-29
  • Rev Recd Date: 2021-04-14
  • Available Online: 2021-05-19
  • Publish Date: 2021-07-15
  • Power supply prototype in High Intensity heavy ion Accelerator Facility-Booster Ring (HIAF-BRing) adopts the scheme of full energy and fast cycle storage pulse power supply topology. Its multi modules are connected in series and parallel pattern, and the power reaches megawatt level. Due to the high power and large scale of the power supply, a module fault interlock protection system based on Programmable Logic Controller (PLC), interlock boards and Field Programmable Gate Array (FPGA) is designed and implemented to protect the power supply in operation. In this paper, first, a design of double redundant module fault interlock is introduced. Second, the logic implemented in PLC is described. Third, the work about FPGA is given. Finally, the system is tested in three aspects: the responsive time of the power supply interlock loop, the total time from controller error occurrence to interlock finish, and the equipment fault response. The result shows that the module fault interlock system can action sensitively, timely and reliably in case of fault occurrence, which meets the requirements of the power supply prototype in HIAF-BRing.
  • loading
  • [1]
    Yang J C, Xia J W, Xiao G Q, et al. High intensity heavy ion accelerator facility (HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 263-265. doi: 10.1016/j.nimb.2013.08.046
    [2]
    Ruan S, Yang J C, Zhang J Q, et al. Design of extraction system in BRing at HIAF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 892: 53-58.
    [3]
    高大庆, 周忠祖, 吴凤军, 等. 强流重离子加速器装置电源预研及进展[J]. 原子能科学技术, 2019, 53(10):2048-2054. (Gao Daqing, Zhou Zhongzu, Wu Fengjun, et al. R & D progress of HIAF power supply system[J]. Atomic Energy Science and Technology, 2019, 53(10): 2048-2054
    [4]
    Wu F J, Gao D Q, Shi C F, et al. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 826: 1-5.
    [5]
    王冠文, 张旌, 齐欣, 等. 基于PLC的谐振电源保护系统设计及实现[J]. 核技术, 2017, 40:060401-60401. (Wang Guanwen, Zhang Jing, Qi Xin, et al. Design and realization of the PLC based protection system for resonant power supply[J]. Nuclear Techniques, 2017, 40: 060401-60401
    [6]
    于春蕾, 赵欢, 丁建国. 上海软X射线自由电子激光装置联锁保护系统[J]. 原子能科学技术, 2018, 52(4):756-761. (Yu Chunlei, Zhao Huan, Ding Jianguo. Interlock system for soft X-ray free-electron laser in Shanghai[J]. Atomic Energy Science and Technology, 2018, 52(4): 756-761 doi: 10.7538/yzk.2017.youxian.0396
    [7]
    赵璐, 潘圣民, 黄懿赟, 等. EAST中性束注入高压电源综合保护系统[J]. 强激光与粒子束, 2017, 29:065010. (Zhao Lu, Pan Shengmin, Huang Yiyun, et al. Integrated protection system of EAST-NBI high voltage power supply[J]. High Power Laser and Particle Beams, 2017, 29: 065010 doi: 10.11884/HPLPB201729.160452
    [8]
    刘鑫, 蒋舸扬, 沈立人, 等. 基于FPGA和ARM的控制器设计及在快联锁保护系统中的应用[J]. 核技术, 2010, 33(9):653-656. (Liu Xin, Jiang Geyang, Shen Liren, et al. Design of a controller based on FPGA & ARM and its application in the SSRF fast interlock system[J]. Nuclear Techniques, 2010, 33(9): 653-656
    [9]
    李海荣, 蒋舸扬, 金林, 等. 质子治疗装置动态电源控制系统研发[J]. 强激光与粒子束, 2020, 32:045108. (Li Hairong, Jiang Geyang, Jin Lin, et al. Development of dynamic power control system in proton therapy facility[J]. High Power Laser and Particle Beams, 2020, 32: 045108
    [10]
    谢希仁. 计算机网络[M]. 北京: 电子工业出版社, 2017.

    Xie Xiren. Computer network[M]. Beijing: Publishing House of Electronics Industry, 2017
    [11]
    郑亮, 蒋大明, 戴胜华. PLC可靠性分析与冗余设计[J]. 工矿自动化, 2005, 2:58-59. (Zheng Liang, Jiang Daming, Dai Shenghua. Reliability analysis and redundancy design of PLC[J]. Industry and Mine Automation, 2005, 2: 58-59 doi: 10.3969/j.issn.1671-251X.2005.02.022
    [12]
    清华大学电子学教研组, 童诗白, 华成英. 模拟电子技术基础[M]. 北京: 高等教育出版社, 2015.

    Electronics Teaching and Research Group of Tsinghua University, Tong Shibai, Hua Chengying. Fundamentals of analog electronic technology[M]. Beijing: Higher Education Press, 2015
    [13]
    张万忠. 可编程控制器应用技术[M]. 北京: 化学工业出版社, 2005.

    Zhang Wanzhong. Application technology of PLC[M]. Beijing: Chemical Industry Press, 2005
    [14]
    夏宇闻. Verilog数字系统设计教程[M]. 北京: 北京航空航天大学出版社, 2013.

    Xia Yuwen. Verilog digital system design course[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2013
    [15]
    王兆安, 刘进军. 电力电子技术[M]. 北京: 机械工业出版社, 2009.

    Wang Zhaoan, Liu Jinjun. Power electronic technology[M]. Beijing: China Machine Press, 2009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views (952) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return