Citation: | Fang Jianwei, Hong Yuanzhi, Wang Yigang, et al. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33: 074003. doi: 10.11884/HPLPB202133.210035 |
[1] |
Tang Y G, Wu C F, Wang L. Preliminary research of HOM for 100 MHz superconducting cavity in the pre-research project of HALS[J]. Journal of Physics: Conference Series, 2019, 1350: 012017. doi: 10.1088/1742-6596/1350/1/012017
|
[2] |
温华明, 严陆光, 林良真. 超导在加速器中的应用概况[J]. 低温与超导, 2005, 33(1):46-49. (Wen Huaming, Yan Liuguang, Lin Liangzhen. Status of Superconductivity in large-scale particle accelerators[J]. Cryogenics And Superconductivity, 2005, 33(1): 46-49 doi: 10.3969/j.issn.1001-7100.2005.01.011
|
[3] |
Padamsee H, Knobloch J, Hays T, et al. RF superconductivity for accelerators[J]. Physics Today, 1999, 52(7): 54.
|
[4] |
李欣, 陈强, 辛天牧, 等. 射频超导腔加速性能的改进[J]. 强激光与粒子束, 2006, 18(9):1581-1584. (Li Xin, Chen Qiang, Xin Tianmu, et al. Performance improvement of RF superconducting cavity[J]. High Power Laser and Particle Beams, 2006, 18(9): 1581-1584
|
[5] |
Valizadeh R, Malyshev O B, Wang S H, et al. Low secondary electron yield engineered surface for electron cloud mitigation[J]. Applied Physics Letters, 2014, 105: 231605. doi: 10.1063/1.4902993
|
[6] |
郝建红, 丁武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象[J]. 物理学报, 2006, 55(9):4789-4794. (Hao Jianhong, Ding Wu, Dong Zhiwei. Moltipactor discharge in a magnetically insulated transmission line oscillator[J]. Acta Physica Sinica, 2006, 55(9): 4789-4794 doi: 10.3321/j.issn:1000-3290.2006.09.067
|
[7] |
Price D, Benford J N. General scaling of pulse shortening in explosive-emission-driven microwave sources[J]. Plasma Science IEEE Transactions on, 1998, 26(3): 256-262. doi: 10.1109/27.700752
|
[8] |
Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Physical Review Letters, 2004, 93(1): 6855-6855.
|
[9] |
Ye M, He Y N, Hu S G, et al. Suppression of secondary electron yield by micro-porous array structure[J]. Journal of Applied Physics, 2013, 113: 074904. doi: 10.1063/1.4792514
|
[10] |
何鋆, 杨晶, 苗光辉, 等. 高性能多功能介质二次电子发射特性研究平台[J]. 强激光与粒子束, 2020, 32:033003. (He Yun, Yang Jing, Miao Guanghui, et al. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32: 033003
|
[11] |
Kijima Y, Saito Y, Furuya T, et al. The secondary electron emission coefficient of the material for the superconducting cavity input coupler[J]. Shinku, 2002, 45(7): 599-603. doi: 10.3131/jvsj.45.599
|
[12] |
Noer R, College C, Northfield, et al. Secondary electron yield of NB RF cavity surfaces[C]//The 10th Workshop on RF Superconductivity. 2001: 400-402.
|
[13] |
Kuzucan A, Stri H, Taborelli M. Secondary electron yield on cryogenic surfaces as a function of physisorbed gases[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012, 30: 051401.
|
[14] |
Spallino L, Angelucci M, Larciprete R, et al. On the compatibility of porous surfaces with cryogenic vacuum in future high-energy particle accelerators[J]. Applied Physics Letters, 2019, 114: 153103. doi: 10.1063/1.5085754
|
[15] |
Spallino L. Material properties compliance with cryogenic vacuum for particle accelerators[J]. Journal of Vacuum Science & Technology B, 2020, 38: 032803.
|
[16] |
Calder R, Grobner O, Mathewson A G, et al. Synchrotron radiation induced gas desorption from a Prototype Large Hadron Collider beam screen at cryogenic temperatures[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 1996, 14(4): 2618-2623.
|