Citation: | Fang Jianwei, Hong Yuanzhi, Wang Yigang, et al. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33: 074003. doi: 10.11884/HPLPB202133.210035 |
[1] |
Tang Y G, Wu C F, Wang L. Preliminary research of HOM for 100 MHz superconducting cavity in the pre-research project of HALS[J]. Journal of Physics: Conference Series, 2019, 1350: 012017. doi: 10.1088/1742-6596/1350/1/012017
|
[2] |
温华明, 严陆光, 林良真. 超导在加速器中的应用概况[J]. 低温与超导, 2005, 33(1):46-49. (Wen Huaming, Yan Liuguang, Lin Liangzhen. Status of Superconductivity in large-scale particle accelerators[J]. Cryogenics And Superconductivity, 2005, 33(1): 46-49 doi: 10.3969/j.issn.1001-7100.2005.01.011
|
[3] |
Padamsee H, Knobloch J, Hays T, et al. RF superconductivity for accelerators[J]. Physics Today, 1999, 52(7): 54.
|
[4] |
李欣, 陈强, 辛天牧, 等. 射频超导腔加速性能的改进[J]. 强激光与粒子束, 2006, 18(9):1581-1584. (Li Xin, Chen Qiang, Xin Tianmu, et al. Performance improvement of RF superconducting cavity[J]. High Power Laser and Particle Beams, 2006, 18(9): 1581-1584
|
[5] |
Valizadeh R, Malyshev O B, Wang S H, et al. Low secondary electron yield engineered surface for electron cloud mitigation[J]. Applied Physics Letters, 2014, 105: 231605. doi: 10.1063/1.4902993
|
[6] |
郝建红, 丁武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象[J]. 物理学报, 2006, 55(9):4789-4794. (Hao Jianhong, Ding Wu, Dong Zhiwei. Moltipactor discharge in a magnetically insulated transmission line oscillator[J]. Acta Physica Sinica, 2006, 55(9): 4789-4794 doi: 10.3321/j.issn:1000-3290.2006.09.067
|
[7] |
Price D, Benford J N. General scaling of pulse shortening in explosive-emission-driven microwave sources[J]. Plasma Science IEEE Transactions on, 1998, 26(3): 256-262. doi: 10.1109/27.700752
|
[8] |
Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Physical Review Letters, 2004, 93(1): 6855-6855.
|
[9] |
Ye M, He Y N, Hu S G, et al. Suppression of secondary electron yield by micro-porous array structure[J]. Journal of Applied Physics, 2013, 113: 074904. doi: 10.1063/1.4792514
|
[10] |
何鋆, 杨晶, 苗光辉, 等. 高性能多功能介质二次电子发射特性研究平台[J]. 强激光与粒子束, 2020, 32:033003. (He Yun, Yang Jing, Miao Guanghui, et al. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32: 033003
|
[11] |
Kijima Y, Saito Y, Furuya T, et al. The secondary electron emission coefficient of the material for the superconducting cavity input coupler[J]. Shinku, 2002, 45(7): 599-603. doi: 10.3131/jvsj.45.599
|
[12] |
Noer R, College C, Northfield, et al. Secondary electron yield of NB RF cavity surfaces[C]//The 10th Workshop on RF Superconductivity. 2001: 400-402.
|
[13] |
Kuzucan A, Stri H, Taborelli M. Secondary electron yield on cryogenic surfaces as a function of physisorbed gases[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012, 30: 051401.
|
[14] |
Spallino L, Angelucci M, Larciprete R, et al. On the compatibility of porous surfaces with cryogenic vacuum in future high-energy particle accelerators[J]. Applied Physics Letters, 2019, 114: 153103. doi: 10.1063/1.5085754
|
[15] |
Spallino L. Material properties compliance with cryogenic vacuum for particle accelerators[J]. Journal of Vacuum Science & Technology B, 2020, 38: 032803.
|
[16] |
Calder R, Grobner O, Mathewson A G, et al. Synchrotron radiation induced gas desorption from a Prototype Large Hadron Collider beam screen at cryogenic temperatures[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 1996, 14(4): 2618-2623.
|
[1] | Zhang Yue, Qi Wenjun, Chen Yang, Xu Qian. Research on susceptibility of vehicles to complex electromagnetic environment based on reverberation chamber[J]. High Power Laser and Particle Beams, 2025, 37(2): 023003. doi: 10.11884/HPLPB202537.240228 |
[2] | Zheng Ye, Ma Ziyang, Zhu Jiajing, Yu Miao, Li Siyuan, Zhang Lin, Wang Junlong, Wang Xuefeng. Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress[J]. High Power Laser and Particle Beams, 2022, 34(4): 041003. doi: 10.11884/HPLPB202234.210414 |
[3] | Chen Zidong, Qin Feng, Zhao Jingtao, Zhao Gang, Liu Zhong. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32(10): 103014. doi: 10.11884/HPLPB202032.200097 |
[4] | Yu Hui, Liang Gaobo, Geng Linying, Wei Xun. Evaluation method of complex electromagnetic environment adaptability test for Beidou receiver[J]. High Power Laser and Particle Beams, 2019, 31(10): 103212. doi: 10.11884/HPLPB201931.190197 |
[5] | Tang Chaojing. Recognition of complex electromagnetic environment under cyberspace countermeasures[J]. High Power Laser and Particle Beams, 2019, 31(10): 103201. doi: 10.11884/HPLPB201931.190248 |
[6] | Shen Fei, Li Zheng, Xu Xiong, Li Lin, Fan Yuqi, Zhou Hongping, Guo Kai, Guo Zhongyi. Research on electromagnetic situation cognition for radar confrontation[J]. High Power Laser and Particle Beams, 2019, 31(9): 093204. doi: 10.11884/HPLPB201931.190052 |
[7] | Xu Xiong, Wu Ruowu, Han Hui, Hao Xiaojun, Wang Huabin, Zeng Yonghu, Wang Liandong. Design and test of radar signal environment measurement system[J]. High Power Laser and Particle Beams, 2019, 31(10): 103206. doi: 10.11884/HPLPB201931.190188 |
[8] | Yang Xiaowei, Zhang Hai. Auto-regressive moving average modeling algorithm of impaired limiter[J]. High Power Laser and Particle Beams, 2019, 31(10): 103219. doi: 10.11884/HPLPB201931.190238 |
[9] | Gao Lei, Zeng Yonghu, Wang Liandong, Wang Wei. Application strategy for intermittent sampling repeater jamming to wideband imaging radar[J]. High Power Laser and Particle Beams, 2018, 30(5): 053203. doi: 10.11884/HPLPB201830.170430 |
[10] | Liu Jun, Liang Gaobo, Zhou Lei, Yang Baoping, Chen Jun. Complex electromagnetic environment adaptability test and evaluation for VHF radios[J]. High Power Laser and Particle Beams, 2015, 27(10): 103230. doi: 10.11884/HPLPB201527.103230 |
[11] | Xu Ke, Chen Xing, Wang Hao. Multi-physics simulation for analyzing high power microwave electromagnetic effect of electromagnetic system[J]. High Power Laser and Particle Beams, 2014, 26(07): 073220. doi: 10.11884/HPLPB201426.073220 |
[12] | Li Hanyu, Zhou Haijing, Liao Cheng. Application of JEMS-FDTD in complicated electromagnetic environment study[J]. High Power Laser and Particle Beams, 2014, 26(07): 073213. doi: 10.11884/HPLPB201426.073213 |
[13] | Jiao Yanwei, Hou Deting, Zhou Dongfang, Hu Tao, Lin Jingyu, Wang Zhanqi. Efficiency evaluation of unmanned aerial vehicle in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26(07): 073201. doi: 10.11884/HPLPB201426.073201 |
[14] | Que Weiyan, Sun Yongquan, Liang Jingxiu, Yue Xiuqing, Xiao Jun, Ma Hongge, . Military system E3 test and evaluation during acquisition life cycle[J]. High Power Laser and Particle Beams, 2014, 26(07): 073202. doi: 10.11884/HPLPB201426.073202 |
[15] | Wu Guoqing, Song Lei, Shen Weichao, . Blind separation methods of signals in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26(07): 073215. doi: 10.11884/HPLPB201426.073215 |
[16] | Wang Tianle, Yan Liping, Zhao Xiang, Zhao Qiang, Zhou Haijing, Huang Kama. System-level analysis method of electromagnetic effects on an electronic system containing nonlinear components[J]. High Power Laser and Particle Beams, 2014, 26(07): 073204. doi: 10.11884/HPLPB201426.073204 |
[17] | Li Yong, Xuan Chun, Xie Haiyan, Xia Hongfu, Wang Jianguo. Response of PIN diode to electromagnetic pulse[J]. High Power Laser and Particle Beams, 2013, 25(08): 2061-2066. doi: 10.3788/HPLPB20132508.2061 |
[18] | zhang li-jing, liang chang-hong, chen liang. Goos-H?nchen shift at interface of nonlinear left/right-handed media[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- . |
[19] | wang feng-rui, zhang ying, zhu qi-hua, xie xu-dong, wang xiao, zeng xiao-ming, huang xiao-jun, sun li, guo yi, deng wu, huang zheng. Theoretical study of spectral shaping by liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- . |
[20] | zhou xiao hong, jing feng, su jing qin, wang xi qing, chen jian guo, li da yi. Nonlinear propagation of optical pulse in laser amplifying medium[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- . |