Li Chunlin, Mao Xiaohui, Li Qing, et al. Development of controller and control system for HL-3 device’s electronic cyclotron long-pulse high-voltage power supply module[J]. High Power Laser and Particle Beams, 2025, 37: 035021. doi: 10.11884/HPLPB202537.240303
Citation: Fang Jianwei, Hong Yuanzhi, Wang Yigang, et al. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33: 074003. doi: 10.11884/HPLPB202133.210035

Design and establishment of cryogenic secondary electron yield measurement system

doi: 10.11884/HPLPB202133.210035
  • Received Date: 2021-01-29
  • Rev Recd Date: 2021-06-15
  • Available Online: 2021-06-30
  • Publish Date: 2021-07-15
  • In the construction of Hefei advanced light facility (HALF), vacuum components of superconducting materials are widely used, especially superconducting radio frequency cavity. The superconducting cavity with the characteristics of high accelerating gradient, low beam impedance, high unloaded quality factor and low operating cost has become the first choice for large accelerators in the 21st century. However, electron cloud (EC) phenomenon is generated by the secondary electron emission on the surface of the superconducting cavity and cryogenic vacuum chamber. Deposition of extra dose secondary electron multiplicative power can induce thermal load increase in the cryogenic zone, superconducting cavity quench and so on. Therefore, reduction of the secondary electron emission in the superconducting radio frequency cavity is a great challenge for the design of HALF. On the basis of secondary electron yield (SEY) measurement system for room temperature materials, the authors independently designed the cryogenic sample rack to allow liquid helium to flow through the sample stage and cool sample by heat conduction. It was significant to calculate heat leakage for deciding refrigerating capacity and liquid helium consumption rate. After the system integration and debugging, the cooling performance test was carried out. The results show that cryogenic SEY measurement system was established.
  • [1]
    Tang Y G, Wu C F, Wang L. Preliminary research of HOM for 100 MHz superconducting cavity in the pre-research project of HALS[J]. Journal of Physics: Conference Series, 2019, 1350: 012017. doi: 10.1088/1742-6596/1350/1/012017
    [2]
    温华明, 严陆光, 林良真. 超导在加速器中的应用概况[J]. 低温与超导, 2005, 33(1):46-49. (Wen Huaming, Yan Liuguang, Lin Liangzhen. Status of Superconductivity in large-scale particle accelerators[J]. Cryogenics And Superconductivity, 2005, 33(1): 46-49 doi: 10.3969/j.issn.1001-7100.2005.01.011
    [3]
    Padamsee H, Knobloch J, Hays T, et al. RF superconductivity for accelerators[J]. Physics Today, 1999, 52(7): 54.
    [4]
    李欣, 陈强, 辛天牧, 等. 射频超导腔加速性能的改进[J]. 强激光与粒子束, 2006, 18(9):1581-1584. (Li Xin, Chen Qiang, Xin Tianmu, et al. Performance improvement of RF superconducting cavity[J]. High Power Laser and Particle Beams, 2006, 18(9): 1581-1584
    [5]
    Valizadeh R, Malyshev O B, Wang S H, et al. Low secondary electron yield engineered surface for electron cloud mitigation[J]. Applied Physics Letters, 2014, 105: 231605. doi: 10.1063/1.4902993
    [6]
    郝建红, 丁武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象[J]. 物理学报, 2006, 55(9):4789-4794. (Hao Jianhong, Ding Wu, Dong Zhiwei. Moltipactor discharge in a magnetically insulated transmission line oscillator[J]. Acta Physica Sinica, 2006, 55(9): 4789-4794 doi: 10.3321/j.issn:1000-3290.2006.09.067
    [7]
    Price D, Benford J N. General scaling of pulse shortening in explosive-emission-driven microwave sources[J]. Plasma Science IEEE Transactions on, 1998, 26(3): 256-262. doi: 10.1109/27.700752
    [8]
    Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Physical Review Letters, 2004, 93(1): 6855-6855.
    [9]
    Ye M, He Y N, Hu S G, et al. Suppression of secondary electron yield by micro-porous array structure[J]. Journal of Applied Physics, 2013, 113: 074904. doi: 10.1063/1.4792514
    [10]
    何鋆, 杨晶, 苗光辉, 等. 高性能多功能介质二次电子发射特性研究平台[J]. 强激光与粒子束, 2020, 32:033003. (He Yun, Yang Jing, Miao Guanghui, et al. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32: 033003
    [11]
    Kijima Y, Saito Y, Furuya T, et al. The secondary electron emission coefficient of the material for the superconducting cavity input coupler[J]. Shinku, 2002, 45(7): 599-603. doi: 10.3131/jvsj.45.599
    [12]
    Noer R, College C, Northfield, et al. Secondary electron yield of NB RF cavity surfaces[C]//The 10th Workshop on RF Superconductivity. 2001: 400-402.
    [13]
    Kuzucan A, Stri H, Taborelli M. Secondary electron yield on cryogenic surfaces as a function of physisorbed gases[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012, 30: 051401.
    [14]
    Spallino L, Angelucci M, Larciprete R, et al. On the compatibility of porous surfaces with cryogenic vacuum in future high-energy particle accelerators[J]. Applied Physics Letters, 2019, 114: 153103. doi: 10.1063/1.5085754
    [15]
    Spallino L. Material properties compliance with cryogenic vacuum for particle accelerators[J]. Journal of Vacuum Science & Technology B, 2020, 38: 032803.
    [16]
    Calder R, Grobner O, Mathewson A G, et al. Synchrotron radiation induced gas desorption from a Prototype Large Hadron Collider beam screen at cryogenic temperatures[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 1996, 14(4): 2618-2623.
  • Relative Articles

    [1]Zhang Yue, Qi Wenjun, Chen Yang, Xu Qian. Research on susceptibility of vehicles to complex electromagnetic environment based on reverberation chamber[J]. High Power Laser and Particle Beams, 2025, 37(2): 023003. doi: 10.11884/HPLPB202537.240228
    [2]Zheng Ye, Ma Ziyang, Zhu Jiajing, Yu Miao, Li Siyuan, Zhang Lin, Wang Junlong, Wang Xuefeng. Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress[J]. High Power Laser and Particle Beams, 2022, 34(4): 041003. doi: 10.11884/HPLPB202234.210414
    [3]Chen Zidong, Qin Feng, Zhao Jingtao, Zhao Gang, Liu Zhong. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32(10): 103014. doi: 10.11884/HPLPB202032.200097
    [4]Yu Hui, Liang Gaobo, Geng Linying, Wei Xun. Evaluation method of complex electromagnetic environment adaptability test for Beidou receiver[J]. High Power Laser and Particle Beams, 2019, 31(10): 103212. doi: 10.11884/HPLPB201931.190197
    [5]Tang Chaojing. Recognition of complex electromagnetic environment under cyberspace countermeasures[J]. High Power Laser and Particle Beams, 2019, 31(10): 103201. doi: 10.11884/HPLPB201931.190248
    [6]Shen Fei, Li Zheng, Xu Xiong, Li Lin, Fan Yuqi, Zhou Hongping, Guo Kai, Guo Zhongyi. Research on electromagnetic situation cognition for radar confrontation[J]. High Power Laser and Particle Beams, 2019, 31(9): 093204. doi: 10.11884/HPLPB201931.190052
    [7]Xu Xiong, Wu Ruowu, Han Hui, Hao Xiaojun, Wang Huabin, Zeng Yonghu, Wang Liandong. Design and test of radar signal environment measurement system[J]. High Power Laser and Particle Beams, 2019, 31(10): 103206. doi: 10.11884/HPLPB201931.190188
    [8]Yang Xiaowei, Zhang Hai. Auto-regressive moving average modeling algorithm of impaired limiter[J]. High Power Laser and Particle Beams, 2019, 31(10): 103219. doi: 10.11884/HPLPB201931.190238
    [9]Gao Lei, Zeng Yonghu, Wang Liandong, Wang Wei. Application strategy for intermittent sampling repeater jamming to wideband imaging radar[J]. High Power Laser and Particle Beams, 2018, 30(5): 053203. doi: 10.11884/HPLPB201830.170430
    [10]Liu Jun, Liang Gaobo, Zhou Lei, Yang Baoping, Chen Jun. Complex electromagnetic environment adaptability test and evaluation for VHF radios[J]. High Power Laser and Particle Beams, 2015, 27(10): 103230. doi: 10.11884/HPLPB201527.103230
    [11]Xu Ke, Chen Xing, Wang Hao. Multi-physics simulation for analyzing high power microwave electromagnetic effect of electromagnetic system[J]. High Power Laser and Particle Beams, 2014, 26(07): 073220. doi: 10.11884/HPLPB201426.073220
    [12]Li Hanyu, Zhou Haijing, Liao Cheng. Application of JEMS-FDTD in complicated electromagnetic environment study[J]. High Power Laser and Particle Beams, 2014, 26(07): 073213. doi: 10.11884/HPLPB201426.073213
    [13]Jiao Yanwei, Hou Deting, Zhou Dongfang, Hu Tao, Lin Jingyu, Wang Zhanqi. Efficiency evaluation of unmanned aerial vehicle in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26(07): 073201. doi: 10.11884/HPLPB201426.073201
    [14]Que Weiyan, Sun Yongquan, Liang Jingxiu, Yue Xiuqing, Xiao Jun, Ma Hongge, . Military system E3 test and evaluation during acquisition life cycle[J]. High Power Laser and Particle Beams, 2014, 26(07): 073202. doi: 10.11884/HPLPB201426.073202
    [15]Wu Guoqing, Song Lei, Shen Weichao, . Blind separation methods of signals in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26(07): 073215. doi: 10.11884/HPLPB201426.073215
    [16]Wang Tianle, Yan Liping, Zhao Xiang, Zhao Qiang, Zhou Haijing, Huang Kama. System-level analysis method of electromagnetic effects on an electronic system containing nonlinear components[J]. High Power Laser and Particle Beams, 2014, 26(07): 073204. doi: 10.11884/HPLPB201426.073204
    [17]Li Yong, Xuan Chun, Xie Haiyan, Xia Hongfu, Wang Jianguo. Response of PIN diode to electromagnetic pulse[J]. High Power Laser and Particle Beams, 2013, 25(08): 2061-2066. doi: 10.3788/HPLPB20132508.2061
    [18]zhang li-jing, liang chang-hong, chen liang. Goos-H?nchen shift at interface of nonlinear left/right-handed media[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [19]wang feng-rui, zhang ying, zhu qi-hua, xie xu-dong, wang xiao, zeng xiao-ming, huang xiao-jun, sun li, guo yi, deng wu, huang zheng. Theoretical study of spectral shaping by liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [20]zhou xiao hong, jing feng, su jing qin, wang xi qing, chen jian guo, li da yi. Nonlinear propagation of optical pulse in laser amplifying medium[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 73.4 %META: 73.4 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.5 %其他: 3.5 %其他: 0.2 %其他: 0.2 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.4 %[]: 0.4 %三明: 0.4 %三明: 0.4 %上海: 1.1 %上海: 1.1 %中卫: 1.4 %中卫: 1.4 %中山: 0.1 %中山: 0.1 %丹东: 0.2 %丹东: 0.2 %乐山: 0.2 %乐山: 0.2 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 23.2 %北京: 23.2 %南京: 0.4 %南京: 0.4 %台州: 0.5 %台州: 0.5 %周口: 0.1 %周口: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %大连: 0.1 %大连: 0.1 %天津: 0.7 %天津: 0.7 %宣城: 0.1 %宣城: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 1.0 %张家口: 1.0 %徐州: 0.8 %徐州: 0.8 %成都: 1.0 %成都: 1.0 %扬州: 0.4 %扬州: 0.4 %新乡: 0.1 %新乡: 0.1 %日喀则: 0.1 %日喀则: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.1 %格兰特县: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %泰州: 0.3 %泰州: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.7 %湖州: 0.7 %湘西: 0.2 %湘西: 0.2 %滁州: 0.5 %滁州: 0.5 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.5 %绵阳: 0.5 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 10.3 %芒廷维尤: 10.3 %芝加哥: 0.5 %芝加哥: 0.5 %莱芜: 0.1 %莱芜: 0.1 %衢州: 0.7 %衢州: 0.7 %西宁: 43.4 %西宁: 43.4 %西安: 0.4 %西安: 0.4 %许昌: 0.1 %许昌: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.8 %郑州: 0.8 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 0.3 %长沙: 0.3 %马鞍山: 0.2 %马鞍山: 0.2 %黔东南: 0.1 %黔东南: 0.1 %其他其他ChinaIndiaUnited States[]三明上海中卫中山丹东乐山伊利诺伊州兰州北京南京台州周口哈尔滨大连天津宣城平顶山广州张家口徐州成都扬州新乡日喀则昆明晋城普洱杭州格兰特县桃园武汉泰州济南深圳温州湖州湘西滁州漯河石家庄秦皇岛绵阳舟山芒廷维尤芝加哥莱芜衢州西宁西安许昌运城郑州鄂州重庆金华银川长沙马鞍山黔东南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (1375) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return