Citation: | Shi Zongjia, Xiang Zhenjiao, Du Yinglei, et al. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33: 081011. doi: 10.11884/HPLPB202133.210040 |
[1] |
周仁忠. 自适应光学[J]. 中国光学, 1997(5):98-99. (Zhou Renzhong. Adaptive optics[J]. Optics of China, 1997(5): 98-99
|
[2] |
Hardy J W. Adaptive optics: a progress review[C]//Proceedings of SPIE Active and Adaptive Optical Systems. San Diego, CA, USA: SPIE, 1991: 1542.
|
[3] |
Yasuno Y, Wiesendanger T F, Ruprecht A K, et al. Wavefront-flatness evaluation by wavefront-correlation-information-entropy method and its application for adaptive confocal microscope[J]. Optics Communications, 2004, 232(1/6): 91-97.
|
[4] |
母杰, 景峰, 王逍, 等. 相干合成中基于SPGD算法的平移误差和倾斜误差控制[J]. 中国激光, 2014, 41:0602002. (Mu Jie, Jing Feng, Wang Xiao, et al. Error control of piston and tilt based on SPGD in coherent beam combination[J]. Chinese Journal of Lasers, 2014, 41: 0602002 doi: 10.3788/CJL201441.0602002
|
[5] |
Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
|
[6] |
Débarre D, Booth M J, Wilson T. Image based adaptive optics through optimisation of low spatial frequencies[J]. Optics Express, 2007, 15(13): 8176-8190. doi: 10.1364/OE.15.008176
|
[7] |
Kendrick R L, Acton D S, Duncan A L. Phase-diversity wave-front sensor for imaging systems[J]. Applied Optics, 1994, 33(27): 6533-6546. doi: 10.1364/AO.33.006533
|
[8] |
Guo Hong, Korablinova N, Ren Qiushi, et al. Wavefront reconstruction with artificial neural networks[J]. Optics Express, 2006, 14(14): 6456-6462. doi: 10.1364/OE.14.006456
|
[9] |
Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 2017, 25(13): 15043-15057. doi: 10.1364/OE.25.015043
|
[10] |
Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 2018, 43(6): 1235-1238. doi: 10.1364/OL.43.001235
|
[11] |
Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 2019, 27(1): 240-251. doi: 10.1364/OE.27.000240
|
[12] |
Tian Qinghua, Lu Chenda, Liu Bo, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 2019, 27(8): 10765-10776. doi: 10.1364/OE.27.010765
|
[13] |
马慧敏, 焦俊, 乔焰, 等. 一种基于光强图像深度学习的波前复原方法[J]. 激光与光电子学进展, 2020, 57:081103. (Ma Huimin, Jiao Jun, Qiao Yan, et al. Wavefront restoration method based on light intensity image deep learning[J]. Laser & Optoelectronics Progress, 2020, 57: 081103
|
[14] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[15] |
徐瑞超, 高明. 大气湍流等效相位屏的仿真研究[J]. 西安工业大学学报, 2018, 38(2):108-113. (Xu Ruichao, Gao Ming. Simulation of the equivalent phase screen distorted by atmospheric turbulence[J]. Journal of Xi'an Technological University, 2018, 38(2): 108-113
|
[16] |
Yan Haixing, Li Shushan, Zhang Deliang, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Applied Optics, 2000, 39(18): 3023-3031. doi: 10.1364/AO.39.003023
|
[17] |
Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224. doi: 10.1088/0959-7174/2/3/003
|
[18] |
Yang Ping, Ao Mingwu, Liu Yuan, et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optics Express, 2007, 15(25): 17051-17062. doi: 10.1364/OE.15.017051
|
[19] |
粘伟, 刘兆军, 李博. 大口径空间望远镜变形镜校正能力分析[J]. 科学技术与工程, 2018, 18(23):219-223. (Nian Wei, Liu Zhaojun, Li Bo. Correction quality analysis of deformable mirror for large aperture space telescope[J]. Science Technology and Engineering, 2018, 18(23): 219-223 doi: 10.3969/j.issn.1671-1815.2018.23.030
|