Citation: | Tian Jia, Liu Wenzheng, Zhang Wenjun, et al. Generation and propagation characteristics of plasma applied to pulsed metal ion plasma thruster[J]. High Power Laser and Particle Beams, 2021, 33: 065020. doi: 10.11884/HPLPB202133.210051 |
[1] |
Vondra R, Thomassen K, Solbes A. A pulsed electric thruster for satellite control[J]. Proceedings of the IEEE, 1971, 59(2): 271-277. doi: 10.1109/PROC.1971.8132
|
[2] |
Rayburn C D, Campbell M E, Mattick A T. Pulsed plasma thruster system for microsatellites[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 161-170. doi: 10.2514/1.15422
|
[3] |
Frisbee R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power, 2003, 19(6): 1129-1154. doi: 10.2514/2.6948
|
[4] |
Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches[J]. Plasma Sources Science and Technology, 2016, 25: 033002.
|
[5] |
Burton R L, Turchi P J. Pulsed plasma thruster[J]. Journal of Propulsion and Power, 1998, 14(5): 716-735. doi: 10.2514/2.5334
|
[6] |
Haque S E, Keidar M, Lee T. Low-thrust orbital maneuver analysis for cubesat spacecraft with a micro-cathode arc thruster subsystem[C]//Proceedings of 33rd International Electric Propulsion Conference. Washington, USA, 2013.
|
[7] |
Coletti M, Ciaralli S, Gabriel S B. PPT development for nanosatellite applications: experimental results[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 218-225. doi: 10.1109/TPS.2014.2368054
|
[8] |
黄天坤, 武志文, 刘向阳, 等. 脉冲等离子体推力器电离机制数值分析[J]. 高电压技术, 2015, 41(9):2958-2964. (Huang Tiankun, Wu Zhiwen, Liu Xiangyang, et al. Numerical analysis on the ionization mechanism of pulsed plasma thrusters[J]. High Voltage Engineering, 2015, 41(9): 2958-2964
|
[9] |
Ling W Y L, Zhang Zhe, Tang Haibin, et al. In-plume acceleration of leading-edge ions from a pulsed plasma thruster[J]. Plasma Sources Science and Technology, 2018, 27: 104002. doi: 10.1088/1361-6595/aae19d
|
[10] |
Schein J, Qi N, Binder R, et al. Inductive energy storage driven vacuum arc thruster[J]. Review of Scientific Instruments, 2002, 73(2): 925-927. doi: 10.1063/1.1428784
|
[11] |
刘文正, 王浩. 同轴电极结构下真空放电等离子体生成及传播特性[J]. 强激光与粒子束, 2013, 25(8):2111-2116. (Liu Wenzheng, Wang Hao. Generation and propagation characteristics of vacuum discharge plasma with co-axial electrodes[J]. High Power Laser and Particle Beams, 2013, 25(8): 2111-2116 doi: 10.3788/HPLPB20132508.2111
|
[12] |
Keidar M, Zhuang Taisen, Shashurin A, et al. Electric propulsion for small satellites[J]. Plasma Physics and Controlled Fusion, 2015, 57: 014005. doi: 10.1088/0741-3335/57/1/014005
|
[13] |
Plyutto A A, Ryzhkov V N, Kapin A T. High speed plasma streams in vacuum arcs[J]. Soviet Physics Jetp, 1965, 20(2): 328-337.
|
[14] |
Bolotov A, Kozyrev A, Korolev Y. A physical model of the low-current-density vacuum arc[J]. IEEE Transactions on Plasma Science, 1995, 23(6): 884-892. doi: 10.1109/27.476470
|
[15] |
Beilis I I. Modeling of a microscale short vacuum arc for a space propulsion thruster[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2163-2166. doi: 10.1109/TPS.2008.2004217
|
[16] |
Lukas J, Teel G, Kolbeck J, et al. High thrust-to-power ratio micro-cathode arc thruster[J]. AIP Advances, 2016, 6: 025311. doi: 10.1063/1.4942111
|
[17] |
耿金越, 熊子昌, 龙军, 等. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3):212-218, 231. (Geng Jinyue, Xiong Zichang, Long Jun, et al. The research progress in the micro-cathode arc thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218, 231
|
[18] |
Polk J E, Sekerak M J, Ziemer J K, et al. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2167-2179. doi: 10.1109/TPS.2008.2004374
|
[19] |
Neumann P R C, Bilek M M M, Tarrant R N, et al. A pulsed cathodic arc spacecraft propulsion system[J]. Plasma Sources Science and Technology, 2009, 18: 045005. doi: 10.1088/0963-0252/18/4/045005
|
[20] |
Krinberg I A. Three modes of vacuum arc plasma expansion in the absence and presence of a magnetic field[J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1548-1552. doi: 10.1109/TPS.2005.856475
|
[21] |
Liu Wenzheng, Zhang Dejin, Kong Fei. The impact of electrode configuration on characteristics of vacuum discharge plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. doi: 10.1088/1009-0630/14/2/08
|
[22] |
Liu Wenzheng, Wang Hao, Zhang Dejin. Impact of the electric field distribution on the generation characteristics of vacuum-arc discharge plasmas[J]. IEEE Transactions on Plasma Science, 2013, 41(7): 1690-1695. doi: 10.1109/TPS.2013.2262314
|
[23] |
Liu Wenzheng, Wang Hao, Dou Zhijun. Impact of the insulator on the electric field and generation characteristics of vacuum arc metal plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. doi: 10.1088/1009-0630/16/2/09
|
[24] |
Tian Jia, Liu Wenzheng, Cui Weisheng, et al. Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20: 085403. doi: 10.1088/2058-6272/aabedf
|
[25] |
Tian Jia, Liu Wenzheng, Gao Yongjie, et al. Discharge and metallic plasma generation characteristics of an insulated anode with a micropore[J]. Physics of Plasmas, 2019, 26: 023511. doi: 10.1063/1.5078677
|
[26] |
刘文正, 陈修阳, 崔伟胜, 等. 锥–螺旋电极在真空等离子体生成中的作用[J]. 高电压技术, 2017, 43(6):1863-1867. (Liu Wenzheng, Chen Xiuyang, Cui Weisheng, et al. Impact of cone-spiral electrode on generation characteristics of vacuum-arc discharge plasmas[J]. High Voltage Engineering, 2017, 43(6): 1863-1867
|
[27] |
Cui Wensheng, Liu Wenzheng, Gao Yongjie, et al. Discharge characterization of a multi-anode electrode geometry for vacuum arc thruster[J]. Plasma Sources Science and Technology, 2019, 28: 125010. doi: 10.1088/1361-6595/ab27d8
|
[28] |
Andruczyk D, Tarrant R N, James B W, et al. Langmuir probe study of a titanium pulsed filtered cathodic arc discharge[J]. Plasma Sources Science and Technology, 2006, 15(3): 533-537. doi: 10.1088/0963-0252/15/3/032
|
[29] |
Borthakur S, Talukdar N, Neog N K, et al. Study of plasma parameters in a pulsed plasma accelerator using triple Langmuir probe[J]. Physics of Plasmas, 2018, 25: 013532. doi: 10.1063/1.5009796
|
[30] |
Shao Jiahang, Antipov S P, Baryshev S V, et al. Observation of field-emission dependence on stored energy[J]. Physical Review Letters, 2015, 115: 264802. doi: 10.1103/PhysRevLett.115.264802
|
[31] |
Myers R M, Arrington L A, Pencil E J, et al. Pulsed plasma thruster contamination[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit. Lake Buena Vista, 1996.
|
[1] | Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254 |
[2] | Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006 |
[3] | Xiong Zhengfeng, Ning Hui, Chen Huaibi, Cheng Cheng. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30(7): 073001. doi: 10.11884/HPLPB201830.170469 |
[4] | Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101 |
[5] | Shi Lei, Zhu Yufeng, Lu Yanlei, Qiao Hanqing, Xia Wenfeng, Fan Yajun. Compact GW nanosecond pulse generator based on Tesla transformer[J]. High Power Laser and Particle Beams, 2014, 26(12): 125001. doi: 10.11884/HPLPB201426.125001 |
[6] | Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448 |
[7] | Zhang Rui, Huang Kun, Zou Xiaobing, Wang Xinxin. Circuit simulation of variable-impedance transmission line based on equal-impedance-difference segmentation method[J]. High Power Laser and Particle Beams, 2012, 24(05): 1221-1224. doi: 10.3788/HPLPB20122405.1221 |
[8] | liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[9] | guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[10] | jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- . |
[11] | shen xuming, zhang peng, he tianhui. High power microwave pulse compression of energy doublers[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- . |
[12] | gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- . |
[13] | zhu zhong-ming, wang xu-ben, zhang shuang-shi. Study of exploration capability of pseudo-random code UWB short pulse[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- . |
[14] | xie su-long, cao xue-jun. Theoretic research of X-band excessive modes cylindrical cavity pulse compression technology[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- . |
[15] | zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- . |
[16] | liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- . |
[17] | zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- . |
[18] | xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- . |
[19] | ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- . |
1. | 秦锋,陈伟,王旭桐,任书庆,黄涛,聂鑫. 强电磁脉冲下金属氧化物避雷器瞬态响应特性. 高电压技术. 2022(08): 3326-3333 . ![]() |