Kozlov A, Parfenov Yu, Chepelev V, et al. Assessing immunity of power systems to effects of high-voltage pulses with power on[J]. High Power Laser and Particle Beams, 2019, 31: 070006. doi: 10.11884/HPLPB201931.180356
Citation: Tian Jia, Liu Wenzheng, Zhang Wenjun, et al. Generation and propagation characteristics of plasma applied to pulsed metal ion plasma thruster[J]. High Power Laser and Particle Beams, 2021, 33: 065020. doi: 10.11884/HPLPB202133.210051

Generation and propagation characteristics of plasma applied to pulsed metal ion plasma thruster

doi: 10.11884/HPLPB202133.210051
  • Received Date: 2021-02-21
  • Rev Recd Date: 2021-05-17
  • Available Online: 2021-06-05
  • Publish Date: 2021-06-15
  • In this paper, discharge characteristics, plasma generation and propagation characteristics of pulsed metal ion plasma thruster (PMIPT) using different anode structures are reviewed. First of all, a PMIPT using an exposed anode structure with an insulating sleeve (EASIS) is discussed. Differences in plasma generation and propagation characteristics between the EASIS-PMIPT and the PMIPT using an exposed anode structure without an insulating sleeve (EAS-PMIPT) are analyzed. Results show that the insulating sleeve blocks radial diffusion of generated charged particles near cathode, and improves the ejection performance of plasma. In addition, it is found that a large number of charged particles enters anode during discharge with an exposed anode (EA). Then, a PMIPT using an insulated anode structure (IAS) is discussed. Results indicate that peak density of plasma ejected along axial direction of insulating sleeve is further increased by using an IAS. However, compared with the PMIPT with an EA, production of plasma is reduced. Furthermore, a PMIPT using an IAS with a micropore (IASM) is discussed. It is revealed that, compared with the PMIPT with an EA, plasma peak density and propagation velocity when adopting an IASM increase by 12.6 times and 3.9 times respectively. Eventually, PMIPT structures with a spiral anode structure (SpAS) and a multi-anode structure (MAS) are discussed respectively. Results show that for the two thrusters, directional ejection performance of plasma plumes are effectively improved by using the self-magnetic field and electric field during discharge respectively. This study will provide support for improvement of metal plasma ejection performance and the design of a PMIPT.
  • [1]
    Vondra R, Thomassen K, Solbes A. A pulsed electric thruster for satellite control[J]. Proceedings of the IEEE, 1971, 59(2): 271-277. doi: 10.1109/PROC.1971.8132
    [2]
    Rayburn C D, Campbell M E, Mattick A T. Pulsed plasma thruster system for microsatellites[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 161-170. doi: 10.2514/1.15422
    [3]
    Frisbee R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power, 2003, 19(6): 1129-1154. doi: 10.2514/2.6948
    [4]
    Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches[J]. Plasma Sources Science and Technology, 2016, 25: 033002.
    [5]
    Burton R L, Turchi P J. Pulsed plasma thruster[J]. Journal of Propulsion and Power, 1998, 14(5): 716-735. doi: 10.2514/2.5334
    [6]
    Haque S E, Keidar M, Lee T. Low-thrust orbital maneuver analysis for cubesat spacecraft with a micro-cathode arc thruster subsystem[C]//Proceedings of 33rd International Electric Propulsion Conference. Washington, USA, 2013.
    [7]
    Coletti M, Ciaralli S, Gabriel S B. PPT development for nanosatellite applications: experimental results[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 218-225. doi: 10.1109/TPS.2014.2368054
    [8]
    黄天坤, 武志文, 刘向阳, 等. 脉冲等离子体推力器电离机制数值分析[J]. 高电压技术, 2015, 41(9):2958-2964. (Huang Tiankun, Wu Zhiwen, Liu Xiangyang, et al. Numerical analysis on the ionization mechanism of pulsed plasma thrusters[J]. High Voltage Engineering, 2015, 41(9): 2958-2964
    [9]
    Ling W Y L, Zhang Zhe, Tang Haibin, et al. In-plume acceleration of leading-edge ions from a pulsed plasma thruster[J]. Plasma Sources Science and Technology, 2018, 27: 104002. doi: 10.1088/1361-6595/aae19d
    [10]
    Schein J, Qi N, Binder R, et al. Inductive energy storage driven vacuum arc thruster[J]. Review of Scientific Instruments, 2002, 73(2): 925-927. doi: 10.1063/1.1428784
    [11]
    刘文正, 王浩. 同轴电极结构下真空放电等离子体生成及传播特性[J]. 强激光与粒子束, 2013, 25(8):2111-2116. (Liu Wenzheng, Wang Hao. Generation and propagation characteristics of vacuum discharge plasma with co-axial electrodes[J]. High Power Laser and Particle Beams, 2013, 25(8): 2111-2116 doi: 10.3788/HPLPB20132508.2111
    [12]
    Keidar M, Zhuang Taisen, Shashurin A, et al. Electric propulsion for small satellites[J]. Plasma Physics and Controlled Fusion, 2015, 57: 014005. doi: 10.1088/0741-3335/57/1/014005
    [13]
    Plyutto A A, Ryzhkov V N, Kapin A T. High speed plasma streams in vacuum arcs[J]. Soviet Physics Jetp, 1965, 20(2): 328-337.
    [14]
    Bolotov A, Kozyrev A, Korolev Y. A physical model of the low-current-density vacuum arc[J]. IEEE Transactions on Plasma Science, 1995, 23(6): 884-892. doi: 10.1109/27.476470
    [15]
    Beilis I I. Modeling of a microscale short vacuum arc for a space propulsion thruster[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2163-2166. doi: 10.1109/TPS.2008.2004217
    [16]
    Lukas J, Teel G, Kolbeck J, et al. High thrust-to-power ratio micro-cathode arc thruster[J]. AIP Advances, 2016, 6: 025311. doi: 10.1063/1.4942111
    [17]
    耿金越, 熊子昌, 龙军, 等. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3):212-218, 231. (Geng Jinyue, Xiong Zichang, Long Jun, et al. The research progress in the micro-cathode arc thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218, 231
    [18]
    Polk J E, Sekerak M J, Ziemer J K, et al. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2167-2179. doi: 10.1109/TPS.2008.2004374
    [19]
    Neumann P R C, Bilek M M M, Tarrant R N, et al. A pulsed cathodic arc spacecraft propulsion system[J]. Plasma Sources Science and Technology, 2009, 18: 045005. doi: 10.1088/0963-0252/18/4/045005
    [20]
    Krinberg I A. Three modes of vacuum arc plasma expansion in the absence and presence of a magnetic field[J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1548-1552. doi: 10.1109/TPS.2005.856475
    [21]
    Liu Wenzheng, Zhang Dejin, Kong Fei. The impact of electrode configuration on characteristics of vacuum discharge plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. doi: 10.1088/1009-0630/14/2/08
    [22]
    Liu Wenzheng, Wang Hao, Zhang Dejin. Impact of the electric field distribution on the generation characteristics of vacuum-arc discharge plasmas[J]. IEEE Transactions on Plasma Science, 2013, 41(7): 1690-1695. doi: 10.1109/TPS.2013.2262314
    [23]
    Liu Wenzheng, Wang Hao, Dou Zhijun. Impact of the insulator on the electric field and generation characteristics of vacuum arc metal plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. doi: 10.1088/1009-0630/16/2/09
    [24]
    Tian Jia, Liu Wenzheng, Cui Weisheng, et al. Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20: 085403. doi: 10.1088/2058-6272/aabedf
    [25]
    Tian Jia, Liu Wenzheng, Gao Yongjie, et al. Discharge and metallic plasma generation characteristics of an insulated anode with a micropore[J]. Physics of Plasmas, 2019, 26: 023511. doi: 10.1063/1.5078677
    [26]
    刘文正, 陈修阳, 崔伟胜, 等. 锥–螺旋电极在真空等离子体生成中的作用[J]. 高电压技术, 2017, 43(6):1863-1867. (Liu Wenzheng, Chen Xiuyang, Cui Weisheng, et al. Impact of cone-spiral electrode on generation characteristics of vacuum-arc discharge plasmas[J]. High Voltage Engineering, 2017, 43(6): 1863-1867
    [27]
    Cui Wensheng, Liu Wenzheng, Gao Yongjie, et al. Discharge characterization of a multi-anode electrode geometry for vacuum arc thruster[J]. Plasma Sources Science and Technology, 2019, 28: 125010. doi: 10.1088/1361-6595/ab27d8
    [28]
    Andruczyk D, Tarrant R N, James B W, et al. Langmuir probe study of a titanium pulsed filtered cathodic arc discharge[J]. Plasma Sources Science and Technology, 2006, 15(3): 533-537. doi: 10.1088/0963-0252/15/3/032
    [29]
    Borthakur S, Talukdar N, Neog N K, et al. Study of plasma parameters in a pulsed plasma accelerator using triple Langmuir probe[J]. Physics of Plasmas, 2018, 25: 013532. doi: 10.1063/1.5009796
    [30]
    Shao Jiahang, Antipov S P, Baryshev S V, et al. Observation of field-emission dependence on stored energy[J]. Physical Review Letters, 2015, 115: 264802. doi: 10.1103/PhysRevLett.115.264802
    [31]
    Myers R M, Arrington L A, Pencil E J, et al. Pulsed plasma thruster contamination[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit. Lake Buena Vista, 1996.
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Cheng Cheng. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30(7): 073001. doi: 10.11884/HPLPB201830.170469
    [4]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [5]Shi Lei, Zhu Yufeng, Lu Yanlei, Qiao Hanqing, Xia Wenfeng, Fan Yajun. Compact GW nanosecond pulse generator based on Tesla transformer[J]. High Power Laser and Particle Beams, 2014, 26(12): 125001. doi: 10.11884/HPLPB201426.125001
    [6]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [7]Zhang Rui, Huang Kun, Zou Xiaobing, Wang Xinxin. Circuit simulation of variable-impedance transmission line based on equal-impedance-difference segmentation method[J]. High Power Laser and Particle Beams, 2012, 24(05): 1221-1224. doi: 10.3788/HPLPB20122405.1221
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [10]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [11]shen xuming, zhang peng, he tianhui. High power microwave pulse compression of energy doublers[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [12]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [13]zhu zhong-ming, wang xu-ben, zhang shuang-shi. Study of exploration capability of pseudo-random code UWB short pulse[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [14]xie su-long, cao xue-jun. Theoretic research of X-band excessive modes cylindrical cavity pulse compression technology[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- .
    [15]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [16]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [17]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [19]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(1)

    1. 秦锋,陈伟,王旭桐,任书庆,黄涛,聂鑫. 强电磁脉冲下金属氧化物避雷器瞬态响应特性. 高电压技术. 2022(08): 3326-3333 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 74.9 %META: 74.9 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.3 %China: 0.3 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.3 %Iran (ISLAMIC Republic Of): 0.3 %Mexico: 0.3 %Mexico: 0.3 %[]: 0.1 %[]: 0.1 %上海: 0.3 %上海: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %内江: 0.3 %内江: 0.3 %北京: 16.6 %北京: 16.6 %南京: 0.4 %南京: 0.4 %南宁: 0.1 %南宁: 0.1 %台州: 0.4 %台州: 0.4 %巴中: 0.2 %巴中: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 0.2 %张家口: 0.2 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 0.4 %昆明: 0.4 %杭州: 1.6 %杭州: 1.6 %武汉: 0.2 %武汉: 0.2 %深圳: 0.3 %深圳: 0.3 %湖州: 0.2 %湖州: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.6 %秦皇岛: 0.6 %芒廷维尤: 25.9 %芒廷维尤: 25.9 %芝加哥: 0.2 %芝加哥: 0.2 %衢州: 0.6 %衢州: 0.6 %西宁: 43.3 %西宁: 43.3 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %金华: 0.2 %金华: 0.2 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndiaIran (ISLAMIC Republic Of)Mexico[]上海中山临汾临沂丹东内江北京南京南宁台州巴中广州张家口成都扬州新乡昆明杭州武汉深圳湖州福州秦皇岛芒廷维尤芝加哥衢州西宁西安贵阳运城郑州重庆金华长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(6)

    Article views (1624) PDF downloads(82) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return