Li Shuwang, Shao Shiyong, Mei Haiping, et al. Photo-thermal interferometry phase generation carrier of aerosol absorption[J]. High Power Laser and Particle Beams, 2016, 28: 041001. doi: 10.11884/HPLPB201628.121001
Citation: Wang Haiyang, Xiao Jing, Xie Linshen, et al. Modal analysis of the 32-stage modular Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 085001. doi: 10.11884/HPLPB202133.210054

Modal analysis of the 32-stage modular Marx generator

doi: 10.11884/HPLPB202133.210054
  • Received Date: 2021-02-22
  • Rev Recd Date: 2021-08-02
  • Available Online: 2021-08-14
  • Publish Date: 2021-08-15
  • The dynamic characteristic parameters of the Marx generator can be obtained by modal analysis. In this paper, the simulation analysis and modal experiment of the 32-stage modular Marx generator are conducted to evaluate its mechanical environment adaptability. Firstly, the finite element simulation model of the modular Marx generator is constructed, and the initial vibration modes are acquired. Secondly, under free boundary condition, the integral modal experiment, local modal experiment and transfer characteristic experiment are conducted respectively. In the end, the integral and local modal parameters are calculated. Results show that the 32-stage modular Marx generator has a first-order torsion at 23.58 Hz; the inherent frequency of local structure of the Marx generator is relatively high; the vibration transmissibility scopes on x, y and z axis are respectively 5−15, 6−10 and 10−35. These conclusions provide reference to design Marx generator in later engineering phase.
  • [1]
    邓明海, 曹宁翔, 马成刚, 等. 200 kV重复频率Marx发生器研制[J]. 强激光与粒子束, 2019, 31:055003. (Deng Minghai, Cao Ningxiang, Ma Chenggang, et al. Development of 200 kV repetitive Marx generator[J]. High Power Laser and Particle Beams, 2019, 31: 055003 doi: 10.11884/HPLPB201931.190369
    [2]
    Redjimi A, Nikolić Z, Knež ević D, et al. Post-processing synchronization and characterization of generated signals by a repetitive Marx generator[J]. Optical and Quantum Electronics, 2018, 50: 352. doi: 10.1007/s11082-018-1614-x
    [3]
    Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
    [4]
    宋法伦, 李飞, 龚海涛, 等. 高功率重复频率Marx型脉冲功率源小型化技术研究进展[J]. 强激光与粒子束, 2018, 30:020201. (Song Falun, Li Fei, Gong Haitao, et al. Research progress on miniaturization of high power repetition frequency Marx type pulse power source[J]. High Power Laser and Particle Beams, 2018, 30: 020201 doi: 10.11884/HPLPB201830.170337
    [5]
    贾伟, 陈志强, 郭帆, 等. 典型布局Marx发生器内部过压形成与分布[J]. 华中科技大学学报(自然科学版), 2018, 46(10):110-115. (Jia Wei, Chen Zhiqiang, Guo Fan, et al. Formation mechanism and distribution of internal overvoltage of Marx generator with typical layouts[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2018, 46(10): 110-115
    [6]
    张永民, 陈维青, 杨莉, 等. 储能型Marx发生器的串联电感计算[J]. 高电压技术, 2009, 35(3):651-656. (Zhang Yongmin, Chen Weiqing, Yang Li, et al. Inductance calculation of storage Marx generator[J]. High Voltage Engineering, 2009, 35(3): 651-656
    [7]
    Nasab J N, Hadizade A, Mohsenzade S, et al. A Marx-based generator with adjustable FWHM using a controllable magnetic switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 324-331. doi: 10.1109/TDEI.2018.007522
    [8]
    王翔宇, 樊亚军, 乔汉青, 等. 全同轴型Marx发生器的研制与场路协同仿真[J]. 强激光与粒子束, 2019, 31:115001. (Wang Xiangyu, Fan Yajun, Qiao Hanqing, et al. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31: 115001 doi: 10.11884/HPLPB201931.190125
    [9]
    刘锐, 曾乃工, 王新新. 1.2 MV全封闭Marx发生器的绝缘结构设计[J]. 高电压技术, 2005, 31(4):69-70. (Liu Rui, Zeng Naigong, Wang Xinxin. Insulation design for a 1.2 MV enclosed Marx generator[J]. High Voltage Engineering, 2005, 31(4): 69-70 doi: 10.3969/j.issn.1003-6520.2005.04.026
    [10]
    高炳军, 王滨, 翟兰惠, 等. 吊带支撑低温储罐运输中随机振动分析[J]. 河北工业大学学报, 2018, 47(1):48-52, 58. (Gao Bingjun, Wang Bin, Zhai Lanhui, et al. Random vibration analysis of the strip-supported-cryogenic storage tank in transporting[J]. Journal of Hebei University of Technology, 2018, 47(1): 48-52, 58
    [11]
    瞿金秀, 石长全, 王磊超, 等. 不同老化状态黏弹夹层结构的模态分析[J]. 振动与冲击, 2020, 39(11):69-75. (Qu Jinxiu, Shi Changquan, Wang Leichao, et al. Modal analysis of viscoelastic sandwich structure with different aging states[J]. Journal of Vibration and Shock, 2020, 39(11): 69-75
    [12]
    张建斌. 带橡胶减振器的箭载电子设备动力学响应分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Zhang Jianbin.Research on dynamic response of the electronic equipment with rubber shock absorber on the rockets[D].Harbin: Harbin Institute of Technology, 2019
    [13]
    陈双, 包黎明, 於胜军. 不同路面工况下的整车振动模态能量分析[J]. 机械设计与制造, 2019(3):82-85, 90. (Chen Shuang, Bao Liming, Yu Shengjun. Modal energy analysis of vehicle vibration under different road[J]. Machinery Design & Manufacture, 2019(3): 82-85, 90
    [14]
    唐利涛, 杨舟, 李刚, 等. 基于疲劳损伤谱的随机振动试验方法在智能电表模拟公路运输中的研究[J]. 装备环境工程, 2019, 16(5):38-42. (Tang Litao, Yang Zhou, Li Gang, et al. Random vibration test method based on fatigue damage spectrum in simulation of road transport with smart meter[J]. Equipment Environmental Engineering, 2019, 16(5): 38-42
    [15]
    李勤建, 高翠琢, 边国辉. 组件的模态分析和随机振动分析[J]. 半导体技术, 2012, 37(10):810-814. (Li Qinjian, Gao Cuizhuo, Bian Guohui. Modal analysis and random vibration analysis on a module[J]. Semiconductor Technology, 2012, 37(10): 810-814 doi: 10.3969/j.issn.1003-353x.2012.10.015
    [16]
    王桂伦, 姜东, 周李真辉, 等. 铰接式空间桁架结构模态试验研究[J]. 振动与冲击, 2019, 38(12):252-257. (Wang Guilun, Jiang Dong, Zhou Lizhenhui, et al. Modal experiment for a spherical hinged space truss structure[J]. Journal of Vibration and Shock, 2019, 38(12): 252-257
  • Relative Articles

    [1]Lu Feng, Wang Zhenzhong, Huang Xuepeng, Lei Pengli. Modal analysis and mid-spatial-frequency errors suppression of 6-DOF bonnet polishing robot[J]. High Power Laser and Particle Beams, 2022, 34(11): 119001. doi: 10.11884/HPLPB202234.220013
    [2]Xiao Jing, Wang Haiyang, Xie Linshen, Cheng Le, Sun Chuyu, Shi Ling. Adaptability analysis and optimization design of modular Marx generator in mechanical environment[J]. High Power Laser and Particle Beams, 2022, 34(4): 045001. doi: 10.11884/HPLPB202234.210344
    [3]Wang Keying, Fan Xuanhua, Chen Xueqian, Niu Hongpan. Random vibration response analysis of Shenguang laser facility component based on PANDA platform[J]. High Power Laser and Particle Beams, 2020, 32(1): 011021. doi: 10.11884/HPLPB202032.190269
    [4]Liu Zhiyong, Zeng Herong, Wang Shaohua, Guo haibing, Ma jimin. Finite element analysis of subcritical energy blanket for uranium-based fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2018, 30(3): 036001. doi: 10.11884/HPLPB201830.170099
    [5]Hu Jie, Fan Xuanhua, Chen Xueqian. Simplified modeling of opto-mechanical structure based on dynamic stiffness equivalence[J]. High Power Laser and Particle Beams, 2017, 29(09): 092002. doi: 10.11884/HPLPB201729.170103
    [6]Gao Yang, Zhou Bin, He Yi, He Wanjing. Modeling and simulation on film bulk acoustic resonator with silicon oxide temperature-compensated layer[J]. High Power Laser and Particle Beams, 2015, 27(01): 014103. doi: 10.11884/HPLPB201527.014103
    [7]Liu Zhiyong, Li Zhenghong, Huang Hongwen, Zeng Herong, Wang Shaohua. Finite element analysis of ITER magnet support structure[J]. High Power Laser and Particle Beams, 2015, 27(01): 016013. doi: 10.11884/HPLPB201527.016013
    [8]Zhang Jianghua, Yang Hanwu, Zhang Hua, Tian Xiwen, Liang Bo, Li Song. Constant current charging process of MV-level Marx generator[J]. High Power Laser and Particle Beams, 2012, 24(04): 903-906. doi: 10.3788/HPLPB20122404.0903
    [9]jiang zhiqiang, du hanwen. Mechanical analysis and optimization for taper mechanism of in-vacuum undulator[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [10]chen xueqian, feng jiaquan, xu yuanli. Stability reallocation of large solid state laser based on finite element analysis[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [11]chen ming-jun, pang qi-long, liu xin-yan. Finite element analysis on influence of micro-nano machined surface impurity on optical performance of crystal[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [12]xu gang, zhang jin-qi, zhang xian-fu, yang zhou-bing, meng fan-bao, tang chuan-xiang. Electrical insulation design and numerical simulation analysis of 1 MV compact repetitive Marx generator[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [13]zhang li-sha, xu hong. Influence of oxygen partial pressure on HfO2 residual stresses and its finite element analysis[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [14]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye. Structure design and finite-element analysis of multilayer-mirror soft X-ray energy spectrometer[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [15]huang hong-bin, li jing-zhen, gong xiang-dong, sun feng-shan, ai yue-xia, he tie-feng. Modal analysis of rotating mirror clipped by the elastic bearings for ultra-high speed photography[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [16]zhang jun-wei, feng bin, zhou yi, wang shi-long, xiang yong. Finite element analysis on ambient thermal stability of large aperture optical element[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]wang jin-shan, zhu yu-qun, jiang chao. Finite element analysis of heat transfer in hollow micro-sphere filled with ICF fuel[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [18]cao ding-xiang, zheng wan-guo, he shao-bo, yuan xiao-dong, yu hai-wu, xu mei-jian, cai zhen. Finite element analysis on thermal effect of heat capacity laser disk[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [19]qi wen-zong, huang wei, zhang bin, cai bang-wei, xiong sheng-ming, . Finite element analysis of thermal distortion of infrared CW laser reflectors[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [20]yu de-li, sang feng-ting, jin yu-qi, sun yi-zhu. Finite Element Analysis of the Mirror in High-energy Density Laser Resonator[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 吴刚,贾伟,王海洋,谢霖燊,陈志强,郭帆,吴伟,冯寒亮. 高空核电磁脉冲模拟器研制进展. 中国科学:物理学 力学 天文学. 2023(07): 97-109 .
    2. 张超,陈焕红,刘雪峰,石志成,张艾. 双级升压高速电光调Q驱动电路设计. 航天返回与遥感. 2023(05): 65-71 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.5 %FULLTEXT: 23.5 %META: 70.7 %META: 70.7 %PDF: 5.8 %PDF: 5.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %其他: 1.4 %其他: 1.4 %China: 1.9 %China: 1.9 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Japan: 0.2 %Japan: 0.2 %Koesan: 0.1 %Koesan: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.2 %Pakistan: 0.2 %Rajahmundry: 0.7 %Rajahmundry: 0.7 %Russian Federation: 0.2 %Russian Federation: 0.2 %Serbia: 0.4 %Serbia: 0.4 %Turkey: 0.3 %Turkey: 0.3 %United States: 0.1 %United States: 0.1 %[]: 0.8 %[]: 0.8 %上海: 1.6 %上海: 1.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %京畿道: 0.1 %京畿道: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 0.1 %兰州: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.1 %南昌: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.7 %哈尔科夫: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %圣保罗: 0.1 %圣保罗: 0.1 %多拉杜斯: 0.1 %多拉杜斯: 0.1 %天安: 0.3 %天安: 0.3 %天津: 0.1 %天津: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 0.2 %张家口: 0.2 %徐州: 0.1 %徐州: 0.1 %成都: 0.6 %成都: 0.6 %扬州: 0.1 %扬州: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %漯河: 0.3 %漯河: 0.3 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 1.1 %绵阳: 1.1 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 47.8 %西宁: 47.8 %西安: 1.4 %西安: 1.4 %贵阳: 0.4 %贵阳: 0.4 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %首尔: 0.1 %首尔: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他ChinaIndiaIran (ISLAMIC Republic Of)JapanKoesanKorea Republic ofPakistanRajahmundryRussian FederationSerbiaTurkeyUnited States[]上海中山临汾丹东京畿道保定兰州北京十堰南京南昌台北台州合肥呼和浩特咸阳哈尔科夫哥伦布圣保罗多拉杜斯天安天津宜昌宣城广州张家口徐州成都扬州晋城普洱杭州武汉沈阳沧州泉州深圳温州漯河烟台石家庄秦皇岛绵阳罗奥尔凯埃美国伊利诺斯芝加哥芒廷维尤苏州衡水衢州西宁西安贵阳达尔斯运城邯郸郑州重庆长沙长治首尔香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (941) PDF downloads(78) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return