Volume 33 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Hou Yiran, Wang Yuheng, Wang Xianghui, et al. 2.5-D discontinuous Galerkin time-domain method for Maxwell equations[J]. High Power Laser and Particle Beams, 2021, 33: 073010. doi: 10.11884/HPLPB202133.210056
Citation: Hou Yiran, Wang Yuheng, Wang Xianghui, et al. 2.5-D discontinuous Galerkin time-domain method for Maxwell equations[J]. High Power Laser and Particle Beams, 2021, 33: 073010. doi: 10.11884/HPLPB202133.210056

2.5-D discontinuous Galerkin time-domain method for Maxwell equations

doi: 10.11884/HPLPB202133.210056
  • Received Date: 2021-02-23
  • Rev Recd Date: 2021-04-06
  • Available Online: 2021-05-22
  • Publish Date: 2021-07-15
  • In this work, a 2.5-dimensional discontinuous Galerkin time-domain(2.5D-DGTD) method with perfectly matched layer is proposed as a flexible tool to solve accurately electromagnetic problems in which media are homogeneous in one direction. Two numerical examples are simulated to demonstrate the advantages of the proposed method, which are the coupling between an electric dipole and optical fiber, and the analysis of dispersion characteristics of a photonic crystal fiber. The method is compare with the traditional 2.5-dimensional finite-difference time-domain method. The results show that the 2.5D-DGTD method is more realistic, especially for the simulation of curved shapes, where compared the calculation memory is reduced by 10.4%, the calculation accuracy differs by 0.011%, the calculation time is shortened, and the calculation efficiency is increased by 74.9%.
  • loading
  • [1]
    Ibanescu M, Fink Y, Fan S, et al. An all-dielectric coaxial waveguide[J]. Science, 2000, 289(5478): 415-419. doi: 10.1126/science.289.5478.415
    [2]
    Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362. doi: 10.1126/science.1079280
    [3]
    Moghaddam M, Chew W C, Anderson B, et al. Computation of transient electromagnetic waves in inhomogeneous media[J]. Radio Science, 2016, 26(1): 265-273.
    [4]
    Moghaddam M, Chew W C, Anderson B, et al. Computation of transient electromagnetic waves in inhomogeneous media[J]. Radio Science, 1991, 26(1): 265-273. doi: 10.1029/90RS00924
    [5]
    Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas & Propagation, 1966, 14(5): 302-307.
    [6]
    Tang Zibin, Liu Qing Huo. The 2.5D FDTD and Fourier PSTD methods and applications[J]. Microwave & Optical Technology Letters, 2003, 36(6): 430-436.
    [7]
    Belli K, Rappaport C M, Zhan H, et al. Effectiveness of 2-D and 2.5-D FDTD ground-penetrating radar modeling for bridge-deck deterioration evaluated by 3-D FDTD[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(11): 3656-3663.
    [8]
    Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(10): 2003-2007. doi: 10.1109/22.795075
    [9]
    刘宗信, 陈亦望, 徐鑫, 等. 三维周期结构弱无条件稳定时域有限差分算法[J]. 强激光与粒子束, 2012, 24(11):2687-2692. (Liu Zongxin, Chen Yiwang, Xu Xin, et al. Weakly conditionally stable 3-D FDTD method for periodic structures[J]. High Power Laser and Particle Beams, 2012, 24(11): 2687-2692 doi: 10.3788/HPLPB20122411.2687
    [10]
    Volakis J L, Chatterjee A, Kempel L C. Finite element method electromagnetics : Antennas, microwave circuits, and scattering applications[M]. Piscataway: IEEE Press, 1998.
    [11]
    Kong F N, Johnstad S E, Røsten T, et al. A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media[J]. Geophysics, 2008, 73(1): 9-19.
    [12]
    Ou Yangxin, David P, Chen Y. Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach[J]. Optics express, 2015, 23(23): 30259-30269. doi: 10.1364/OE.23.030259
    [13]
    Ainsworth M. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods[J]. Journal of Computational Physics, 2008, 198(1): 106-130.
    [14]
    Hu F Q, Hussaini M Y, Rasetarinera P. An analysis of the discontinuous Galerkin method for wave propagation problems[J]. Journal of Computational Physics, 1999, 151(2): 921-946. doi: 10.1006/jcph.1999.6227
    [15]
    Hesthaven J S, Warburton T. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem[J]. Philosophical Transactions, 2004, 362(1816): 493-524. doi: 10.1098/rsta.2003.1332
    [16]
    Kennedy C A, Carpenter M H, Lewis R M. Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations[J]. Applied Numerical Mathematics, 2000, 35(3): 177-219. doi: 10.1016/S0168-9274(99)00141-5
    [17]
    Chen Geng, Zhao Lei, Yu Wenhua, et al. A general scheme for the discontinuous Galerkin time-domain modeling and S-parameter extraction of inhomogeneous waveports[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(4): 1701-1712. doi: 10.1109/TMTT.2017.2785800
    [18]
    Almokhtar M, Fujiwara M, Takashima H, et al. Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices[J]. Optics Express, 2014, 22(17): 20045-20059. doi: 10.1364/OE.22.020045
    [19]
    栗岩锋, 刘博文, 王子涵, 等. 光子晶体光纤色散的有限差分法研究[J]. 中国激光, 2004, 31(10):1257-1260. (Li Yanfeng, Liu Bowen, Wang Zihan, et al. Finite difference analysis of dispersion properties of photonic crystal fibers[J]. Chinese Journal of Lasers, 2004, 31(10): 1257-1260 doi: 10.3321/j.issn:0258-7025.2004.10.023
    [20]
    Zhu Zhaoming, Thomas G B. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Optics express, 2002, 10(17): 853-864. doi: 10.1364/OE.10.000853
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1284) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return