Citation: | Deng Liting, Zhong Longquan, Liu Qiang, et al. Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines[J]. High Power Laser and Particle Beams, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066 |
[1] |
Yuan K, Grassi F, Spadacini G, et al. Reproducing field-to-wire coupling effects in twisted-wire pairs by crosstalk[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(4): 991-1000. doi: 10.1109/TEMC.2017.2752231
|
[2] |
郑军奇. EMC电磁兼容设计与测试案例分析[M]. 北京: 电子工业出版社, 2010.
Zheng Junqi. Electromagnetic compatibility design and test case analysis[M]. Beijing: Publishing House of Electronics Industry, 2010
|
[3] |
Dong X, Weng H, Beetner D G, et al. Approximation of worst case crosstalk at high frequencies[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 202-208. doi: 10.1109/TEMC.2010.2081676
|
[4] |
单秦. 高速动车组电磁兼容性关键技术研究[D]. 北京: 北京交通大学, 2013: 93-148.
Shan Qin. Research on key technologies of electromagnetic compatibility for China railway high-speed[D]. Beijing: Beijing Jiaotong University, 2013: 93-148
|
[5] |
Grassi F, Abdollahi H, Spadacini G, et al. Radiated immunity test involving crosstalk and enforcing equivalence with field-to-wire coupling[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 66-74. doi: 10.1109/TEMC.2015.2503599
|
[6] |
Chabane S, Besnier P, Klingler M. A modified enhanced transmission line theory applied to multiconductor transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 1-11. doi: 10.1109/TEMC.2016.2622018
|
[7] |
Rotgerink J L, Schippers H, Leferink F. Low-frequency analysis of multiconductor transmission lines for crosstalk design rules[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 61(5): 1-9.
|
[8] |
杨清熙, 王庆国, 周星, 等. 有耗地面上架空线缆串扰研究等效电路模型[J]. 强激光与粒子束, 2015, 27:083203. (Yang Qingxi, Wang Qingguo, Zhou Xing, et al. Equivalent circuit for crosstalk of overhead cables on lossy ground[J]. High Power Laser and Particle Beams, 2015, 27: 083203 doi: 10.11884/HPLPB201527.083203
|
[9] |
赵翔, 晏奇林, 闫丽萍. 多导体传输线高频场线耦合模型的研究综述[J]. 强激光与粒子束, 2015, 27:120201. (Zhao Xiang, Yan Qilin, Yan Liping. Review of high-frequency field-to-line coupling model of multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2015, 27: 120201 doi: 10.11884/HPLPB201527.120201
|
[10] |
叶志红, 廖成, 张敏, 等. 基于时域BLT的多导体传输线串扰响应分析[J]. 强激光与粒子束, 2014, 26:073212. (Ye Zhihong, Liao Cheng, Zhang Min, et al. Analysis of crosstalk responses of multi-conductor transmission lines based on time domain BLT equation[J]. High Power Laser and Particle Beams, 2014, 26: 073212 doi: 10.11884/HPLPB201426.073212
|
[11] |
石立华, 张琦, 周颖慧, 等. 线束干扰响应的精简计算模型[J]. 强激光与粒子束, 2013, 25:531-536. (Shi Lihua, Zhang Qi, Zhou Yinghui, et al. Reduced model for disturbance analysis of cable bundles[J]. High Power Laser and Particle Beams, 2013, 25: 531-536 doi: 10.3788/HPLPB20132502.0531
|
[12] |
张丹. 高速动车组电磁兼容预测建模方法及其应用研究[D]. 北京: 北京交通大学, 2017: 35-54.
Zhang Dan. Research on the predicting modeling method of electromagnetic compatibility and its application for EMUs[D]. Beijing: Beijing Jiaotong University, 2017: 35-54
|
[13] |
张枭啸. 机载线束串扰及场线耦合计算研究[D]. 南京: 东南大学, 2017: 23-48.
Zhang Xiaoxiao. Research on calculation of crosstalk and field-to-wire[D]. Nanjing: Southeast University, 2017: 23-48
|
[14] |
Paul C R. Solution of the transmission-line equations for three-conductor lines in homogeneous media[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, 20(1): 216-222.
|
[15] |
肖培. 机电设备互连线缆电磁干扰建模及计算方法研究[D]. 成都: 电子科技大学, 2019: 40-41.
Xiao Pei. Study on modeling and calculation method for the electromagnetic interference of interconnection cable in electromechanical equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 40-41
|
[16] |
Xiu D. Efficient collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293-309.
|
[17] |
Field R V J, Grigoriu M, Emery J M. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems[J]. Probabilistic Engineering Mechanics, 2015, 41: 60-72. doi: 10.1016/j.probengmech.2015.05.002
|
[18] |
刘青, 王晨东, 李湛宇, 等. 埋地管道HEMP响应的不确定度量化[J]. 电工技术学报, 2019, 34(9):1789-1797. (Liu Qing, Wang Chendong, Li Zhanyu, et al. Uncertainty quantification of response of buried pipeline to high-altitude electromagnetic pulse[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1789-1797
|
[19] |
Fei Z, Huang Y, Zhou J, et al. Sensitivity analysis of cable crosstalk to uncertain parameters using stochastic reduced order models[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 385-389.
|
[20] |
Fei Z, Huang Y, Zhou J, et al. Uncertainty quantification of crosstalk using stochastic reduced order models[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 59(1): 228-239.
|
[21] |
李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31:053202. (Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202 doi: 10.11884/HPLPB201931.190026
|
[22] |
GB/Z 6113.401-2018, 无线电骚扰和抗扰度测量设备和测量方法规范(第4-1部分): 不确定度、统计学和限值建模 标准化EMC试验的不确定度[S].
GB/Z 6113.401-2018, Specification for radio disturbance and immunity measurement equipment and measurement methods —Part 4-1: Uncertainty, statistics and limit modeling — Uncertainty in standardized EMC tests[S]
|
[1] | Qian Kun, Yang Junyan, Yu Yue, Zhao Dong, Rong Shenghui. Infrared target tracking based on selective convolution features[J]. High Power Laser and Particle Beams, 2019, 31(9): 093202. doi: 10.11884/HPLPB201931.190133 |
[2] | Cai Qing, Liu Huiying, Zhou Sanping, Sun Jingfeng. Adaptive level set model based on local and global intensity information for image segmentation[J]. High Power Laser and Particle Beams, 2017, 29(02): 021003. doi: 10.11884/HPLPB201729.160432 |
[3] | Qin Hanlin, Zeng Qingjie, Li Jia, Zhou Huixin, Yan Xiang, Han Jiaojiao, Lv Enlong. Low-contrast infrared image real-time enhancement based on singular value nonlinear correction[J]. High Power Laser and Particle Beams, 2015, 27(01): 011007. doi: 10.11884/HPLPB201527.011007 |
[4] | You Anqing, Wang Lei, Zhang Rong, Song Haifeng. Detecting approximately-circular object in image[J]. High Power Laser and Particle Beams, 2015, 27(12): 121004. doi: 10.11884/HPLPB201527.121004 |
[5] | Ling Qiang, Huang Shucai, Wu Xiao, Zhong Yu. Infrared small target detection based on kernel anisotropic diffusion[J]. High Power Laser and Particle Beams, 2015, 27(01): 011014. doi: 10.11884/HPLPB201527.011014 |
[6] | Qu Shiru, Yang Honghong. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27(05): 051007. doi: 10.11884/HPLPB201527.051007 |
[7] | Wang Xiaoyang, Peng Zhenming, Zhang Ping, Meng Yeming. Infrared small dim target detection based on local contrast combined with region saliency[J]. High Power Laser and Particle Beams, 2015, 27(09): 091005. doi: 10.11884/HPLPB201527.091005 |
[8] | Wen Nu, Yang Shizhi, Cui Shengcheng, Cheng Wei. Adaptive dual-tree complex wavelet algorithm for remote sensing image restoration[J]. High Power Laser and Particle Beams, 2014, 26(10): 101003. doi: 10.11884/HPLPB201426.101003 |
[9] | Ma Ke, Peng Zhenming, He Yanmin, Gao Yuan, Zhang Ping. An improved method for dim infrared target detection with nonsubsampled Contourlet transform[J]. High Power Laser and Particle Beams, 2013, 25(11): 2811-2815. doi: 10.3788/HPLPB20132511.2811 |
[10] | Bai Honggang, Zhang Jianqi, Wang Xiaorui. Infrared complex background clutter suppression algorithm based on wave atom transform[J]. High Power Laser and Particle Beams, 2013, 25(01): 37-41. doi: 10.3788/HPLPB20132501.0037 |
[11] | Jing Liang, Peng Zhenming, He Yanmin, Pu Tian. Infrared dim target detection based on anisotropic SUSAN filtering[J]. High Power Laser and Particle Beams, 2013, 25(09): 2208-2212. doi: 10.3788/HPLPB20132509.2208 |
[12] | Qin Hanlin, Huang Yang, Yao Keke, Zhou Huixin, Liu ShangQian. Multi-scale kernel local normalization for infrared image background suppression[J]. High Power Laser and Particle Beams, 2012, 24(05): 1063-1066. doi: 10.3788/HPLPB20122405.1063 |
[13] | huang yonglin, ye yutang, qiao naosheng, chen zhenlong. Infrared image segmentation based on fast fuzzy C-means clustering[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- . |
[14] | zhang libao, li dongling, yu xianchuan, wang pengfei, cai lei. Region-of-interest image edge detection based on histogram[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- . |
[15] | li fan, liu shangqian, hong ming, qin hanlin. Algorithm of infrared image segmentation based on ant colony[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[16] | chi fangting, li bo, liu yiyang, chen sufen, jiang bo. Ultraviolet light and ozone surface modification of poly-alpha α-methylstyrene using electroless nickel plating[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- . |
[17] | qin hanlin, zhou huixin, liu shangqian, li fan. Dim and small target background suppression using bilateral filtering[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- . |
[18] | liu chang-song, yan gao-shi, cai jian-rong. A new search algorithm for fast block-matching motion estimation[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- . |
[19] | fang liang, lu jia-jia, ye yu-tang, yang xian-ming, cheng zhi-qiang. New method for edge detection of infrared images based on Mumford-Shah model[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- . |
[20] | cheng yong-dong, li jia-yin. Study on microwave self-adapting equalizer for amplifier of multiple-beam klystron[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- . |
1. | 潘强,印鉴. 基于权重约束决策的图像增强算法. 控制工程. 2018(11): 2017-2021 . ![]() | |
2. | 王新赛,周丰俊,郑磊,贺菁. 红外成像技术在城市地下空间防灾监测与应急搜救中的应用发展对策. 中国工程科学. 2017(06): 92-99 . ![]() | |
3. | 秦翰林,曾庆杰,李佳,周慧鑫,延翔,韩姣姣,吕恩龙. 奇异值非线性修正的低对比度红外图像实时增强. 强激光与粒子束. 2015(01): 59-62 . ![]() |