Citation: | Deng Liting, Zhong Longquan, Liu Qiang, et al. Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines[J]. High Power Laser and Particle Beams, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066 |
[1] |
Yuan K, Grassi F, Spadacini G, et al. Reproducing field-to-wire coupling effects in twisted-wire pairs by crosstalk[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(4): 991-1000. doi: 10.1109/TEMC.2017.2752231
|
[2] |
郑军奇. EMC电磁兼容设计与测试案例分析[M]. 北京: 电子工业出版社, 2010.
Zheng Junqi. Electromagnetic compatibility design and test case analysis[M]. Beijing: Publishing House of Electronics Industry, 2010
|
[3] |
Dong X, Weng H, Beetner D G, et al. Approximation of worst case crosstalk at high frequencies[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 202-208. doi: 10.1109/TEMC.2010.2081676
|
[4] |
单秦. 高速动车组电磁兼容性关键技术研究[D]. 北京: 北京交通大学, 2013: 93-148.
Shan Qin. Research on key technologies of electromagnetic compatibility for China railway high-speed[D]. Beijing: Beijing Jiaotong University, 2013: 93-148
|
[5] |
Grassi F, Abdollahi H, Spadacini G, et al. Radiated immunity test involving crosstalk and enforcing equivalence with field-to-wire coupling[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 66-74. doi: 10.1109/TEMC.2015.2503599
|
[6] |
Chabane S, Besnier P, Klingler M. A modified enhanced transmission line theory applied to multiconductor transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 1-11. doi: 10.1109/TEMC.2016.2622018
|
[7] |
Rotgerink J L, Schippers H, Leferink F. Low-frequency analysis of multiconductor transmission lines for crosstalk design rules[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 61(5): 1-9.
|
[8] |
杨清熙, 王庆国, 周星, 等. 有耗地面上架空线缆串扰研究等效电路模型[J]. 强激光与粒子束, 2015, 27:083203. (Yang Qingxi, Wang Qingguo, Zhou Xing, et al. Equivalent circuit for crosstalk of overhead cables on lossy ground[J]. High Power Laser and Particle Beams, 2015, 27: 083203 doi: 10.11884/HPLPB201527.083203
|
[9] |
赵翔, 晏奇林, 闫丽萍. 多导体传输线高频场线耦合模型的研究综述[J]. 强激光与粒子束, 2015, 27:120201. (Zhao Xiang, Yan Qilin, Yan Liping. Review of high-frequency field-to-line coupling model of multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2015, 27: 120201 doi: 10.11884/HPLPB201527.120201
|
[10] |
叶志红, 廖成, 张敏, 等. 基于时域BLT的多导体传输线串扰响应分析[J]. 强激光与粒子束, 2014, 26:073212. (Ye Zhihong, Liao Cheng, Zhang Min, et al. Analysis of crosstalk responses of multi-conductor transmission lines based on time domain BLT equation[J]. High Power Laser and Particle Beams, 2014, 26: 073212 doi: 10.11884/HPLPB201426.073212
|
[11] |
石立华, 张琦, 周颖慧, 等. 线束干扰响应的精简计算模型[J]. 强激光与粒子束, 2013, 25:531-536. (Shi Lihua, Zhang Qi, Zhou Yinghui, et al. Reduced model for disturbance analysis of cable bundles[J]. High Power Laser and Particle Beams, 2013, 25: 531-536 doi: 10.3788/HPLPB20132502.0531
|
[12] |
张丹. 高速动车组电磁兼容预测建模方法及其应用研究[D]. 北京: 北京交通大学, 2017: 35-54.
Zhang Dan. Research on the predicting modeling method of electromagnetic compatibility and its application for EMUs[D]. Beijing: Beijing Jiaotong University, 2017: 35-54
|
[13] |
张枭啸. 机载线束串扰及场线耦合计算研究[D]. 南京: 东南大学, 2017: 23-48.
Zhang Xiaoxiao. Research on calculation of crosstalk and field-to-wire[D]. Nanjing: Southeast University, 2017: 23-48
|
[14] |
Paul C R. Solution of the transmission-line equations for three-conductor lines in homogeneous media[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, 20(1): 216-222.
|
[15] |
肖培. 机电设备互连线缆电磁干扰建模及计算方法研究[D]. 成都: 电子科技大学, 2019: 40-41.
Xiao Pei. Study on modeling and calculation method for the electromagnetic interference of interconnection cable in electromechanical equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 40-41
|
[16] |
Xiu D. Efficient collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293-309.
|
[17] |
Field R V J, Grigoriu M, Emery J M. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems[J]. Probabilistic Engineering Mechanics, 2015, 41: 60-72. doi: 10.1016/j.probengmech.2015.05.002
|
[18] |
刘青, 王晨东, 李湛宇, 等. 埋地管道HEMP响应的不确定度量化[J]. 电工技术学报, 2019, 34(9):1789-1797. (Liu Qing, Wang Chendong, Li Zhanyu, et al. Uncertainty quantification of response of buried pipeline to high-altitude electromagnetic pulse[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1789-1797
|
[19] |
Fei Z, Huang Y, Zhou J, et al. Sensitivity analysis of cable crosstalk to uncertain parameters using stochastic reduced order models[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 385-389.
|
[20] |
Fei Z, Huang Y, Zhou J, et al. Uncertainty quantification of crosstalk using stochastic reduced order models[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 59(1): 228-239.
|
[21] |
李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31:053202. (Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202 doi: 10.11884/HPLPB201931.190026
|
[22] |
GB/Z 6113.401-2018, 无线电骚扰和抗扰度测量设备和测量方法规范(第4-1部分): 不确定度、统计学和限值建模 标准化EMC试验的不确定度[S].
GB/Z 6113.401-2018, Specification for radio disturbance and immunity measurement equipment and measurement methods —Part 4-1: Uncertainty, statistics and limit modeling — Uncertainty in standardized EMC tests[S]
|