Volume 33 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Mao Shuoyu, Feng Bin, Li Ping, et al. Noncollinear matched broadband third-harmonic generation based on angular dispersion[J]. High Power Laser and Particle Beams, 2021, 33: 071003. doi: 10.11884/HPLPB202133.210074
Citation: Mao Shuoyu, Feng Bin, Li Ping, et al. Noncollinear matched broadband third-harmonic generation based on angular dispersion[J]. High Power Laser and Particle Beams, 2021, 33: 071003. doi: 10.11884/HPLPB202133.210074

Noncollinear matched broadband third-harmonic generation based on angular dispersion

doi: 10.11884/HPLPB202133.210074
  • Received Date: 2021-03-10
  • Rev Recd Date: 2021-06-06
  • Available Online: 2021-06-23
  • Publish Date: 2021-07-15
  • Broadband laser can effectively reduce the nonlinear effect in the process of laser plasma interaction. This paper proposes a noncollinear matching broadband third-harmonic generation based on angular dispersion, which uses the noncollinear sum frequency of the broadband fundamental wave and the narrowband second harmonic to generate broadband third harmonic, and the sum frequency process is realized by a specially designed gradient grating. The fundamental laser beams of different frequencies are incident at a specific angle, which compensates for the phase mismatch caused by the wavelength difference, so that the whole waveband meets the match condition of phase. Theoretical simulation shows that using KDP crystal type II phase matching, high efficiency broadband third-harmonic generation can be achieved by combining the broad-band fundamental wave (center wavelength 1058 nm, bandwidth 10 nm) and the second harmonic (526.5 nm).
  • loading
  • [1]
    Linford G J, Johnson B C, Hildum J S, et al. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory[J]. Applied Optics, 1982, 21(20): 3633-3643. doi: 10.1364/AO.21.003633
    [2]
    Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
    [3]
    Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7505): 343-348.
    [4]
    Lindl J D, Landen O L, Edwards J, et al. Erratum: “review of the National Ignition Campaign 2009-2012” [Phys. Plasmas 21, 020501 (2014)][J]. Physics of Plasmas, 2014, 21: 129902. doi: 10.1063/1.4903459
    [5]
    李强, 张彬, 蔡邦维, 等. 时间位相调制对高强度三次谐波转换的影响[J]. 光子学报, 2004, 33(7):782-785. (LI Qiang, Zhang Bin, Cai Bangwei, et al. The effect of temporal phase modulation on high-power third harmonics conversion[J]. Acta Photonica Sinica, 2004, 33(7): 782-785
    [6]
    Pennington D M, Henesian M A, Milam D, et al. Efficient broadband third-harmonic frequency conversion via angular dispersion[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion. 1995: 645-654.
    [7]
    Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3: e3. doi: 10.1017/hpl.2014.52
    [8]
    Choge D K, Chen Huaixi, Guo Lei, et al. High power broadband orange laser by double-pass sum-frequency mixing in MgO: PPLN[J]. Laser Physics Letters, 2019, 16: 025402. doi: 10.1088/1612-202X/aaf792
    [9]
    于淼, 金光勇, 王超. 高峰值功率KDP晶体四倍频266 nm紫外激光器[J]. 强激光与粒子束, 2015, 27:041003. (Yu Miao, Jin Guangyong, Wang Chao. High peak power fourth harmonic 266 nm UV laser using a KDP crystal[J]. High Power Laser and Particle Beams, 2015, 27: 041003 doi: 10.11884/HPLPB201527.041003
    [10]
    Mero M, Petrov V. High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier[J]. IEEE Photonics Journal, 2017, 9: 3200408.
    [11]
    Richter T, Schmidt-Langhorst C, Elschner R, et al. Distributed 1-Tb/s all-optical aggregation capacity in 125-GHz optical bandwidth by frequency conversion in fiber[C]//Proceedings of the 2015 European Conference on Optical Communication. 2015.
    [12]
    王芳, 李富全, 贾怀庭, 等. 兼容多波长及多脉宽输出的频率转换系统设计[J]. 强激光与粒子束, 2015, 27:032018. (Wang Fang, Li Fuquan, Jia Huaiting, et al. Design of compatible harmonic generation system for multi wavelength and multiple pulse-width laser output[J]. High Power Laser and Particle Beams, 2015, 27: 032018 doi: 10.11884/HPLPB201527.032018
    [13]
    Zhu Heyuan, Wang Tao, Zheng Wanguo, et al. Efficient second harmonic generation of femtosecond laser at 1 μm[J]. Optics Express, 2004, 12(10): 2150-2155. doi: 10.1364/OPEX.12.002150
    [14]
    Chen Ying, Yuan Peng, Qian Liejia, et al. Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: glass lasers[J]. Optics Communications, 2010, 283(13): 2737-2741. doi: 10.1016/j.optcom.2010.03.008
    [15]
    任广森, 孙全, 吴武明, 等. 径向偏振调制对聚焦光斑匀滑及偏振特性的影响[J]. 强激光与粒子束, 2015, 27:122008. (Ren Guangsen, Sun Quan, Wu Wuming, et al. Effect of radial polarization modulation on smoothing and polarization properties of focal speckle[J]. High Power Laser and Particle Beams, 2015, 27: 122008 doi: 10.11884/HPLPB201527.122008
    [16]
    Néauport J, Journot E, Gaborit G, et al. Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities[J]. Applied Optics, 2005, 44(16): 3143-3152. doi: 10.1364/AO.44.003143
    [17]
    Cui Yong, Gao Yanqi, Rao Daxing, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (922) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return