Volume 33 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Tang Xiao, Sun Wenjie, He Mingzu, et al. A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065004. doi: 10.11884/HPLPB202133.210078
Citation: Tang Xiao, Sun Wenjie, He Mingzu, et al. A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065004. doi: 10.11884/HPLPB202133.210078

A bipolar nanosecond pulse source based on liner transformer driver

doi: 10.11884/HPLPB202133.210078
  • Received Date: 2021-03-11
  • Rev Recd Date: 2021-05-19
  • Available Online: 2021-06-02
  • Publish Date: 2021-06-15
  • Aiming at the application demand of bipolar pulse voltage DBD discharge, an all-solid-state bipolar nanosecond pulse forming topology based on linear transformer driver (LTD) is proposed. The control circuit of each switch does not require additional high voltage isolated power supply in the operating state. In theory, it can achieve unlimited stacking of modules like the traditional unipolar LTD to obtain higher voltage bipolar pulse output. Each module integrates same number of energy storage capacitors with opposite voltage polarity, which makes the magnetic core's exciting current alternate between positive and negative directions under different pulse polarity, thus effectively improves the utilization rate of the magnetic core, and does not need an additional magnetic flux reset circuit. Finally, a modular compact bipolar LTD principle verification prototype was developed. The key parameters of the prototype are as follows: amplitude 0 to ±2 kV, pulse width of top flat 50 ns−200 ns, burst repetition frequency 500 kHz. All the pulse parameters can be flexibly adjusted through the host computer.
  • loading
  • [1]
    商克峰, 王美威, 鲁娜, 等. 沿面/体介质阻挡放电装置的放电及臭氧生成特性[J]. 高电压技术, 2021, 47(1):353-359. (Shang Kefeng, Wang Meiwei, Lu Na, et al. Discharge characteristics and ozone generation of surface/volume hybrid dielectric barrier discharge devices[J]. High Voltage Engineering, 2021, 47(1): 353-359
    [2]
    Yanallah K, Pontiga F, Fernández-Rueda A, et al. Experimental investigation and numerical modelling of positive corona discharge: ozone generation[J]. Journal of Physics D: Applied Physics, 2009, 42: 065202. doi: 10.1088/0022-3727/42/6/065202
    [3]
    徐晗, 陈泽煜, 刘定新. 大气压冷等离子体处理水溶液: 液相活性粒子检测方法综述[J]. 电工技术学报, 2020, 35(17):3561-3582. (Xu Han, Chen Zeyu, Liu Dingxin. Aqueous solutions treated by cold atmospheric plasmas: a review of the detection methods of aqueous reactive species[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3561-3582
    [4]
    Kim G C, Kim G J, Park S R, et al. Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer[J]. Journal of Physics D: Applied Physics, 2009, 42: 032005. doi: 10.1088/0022-3727/42/3/032005
    [5]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [6]
    Peter S, Günther M, Hauschild D, et al. Low temperature plasma enhanced chemical vapor deposition of thin films combining mechanical stiffness, electrical insulation, and homogeneity in microcavities[J]. Journal of Applied Physics, 2010, 108: 043303. doi: 10.1063/1.3474989
    [7]
    Akishev Y, Grushin M, Napartovich A, et al. Novel AC and DC non-thermal Plasma sources for cold surface treatment of polymer films and fabrics at atmospheric pressure[J]. Plasmas and Polymers, 2002, 7(3): 261-289. doi: 10.1023/A:1019990508769
    [8]
    吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16):3494-3503. (Wu Shilin, Yang Qing, Shao Tao. Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503
    [9]
    Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1): 168-185. doi: 10.2514/1.38113
    [10]
    毛枚良, 江定武, 陈亮中, 等. 受DBD等离子体控制的低速流动数值模拟方法研究[J]. 空气动力学学报, 2011, 29(2):129-134, 162. (Mao Meiliang, Jiang Dingwu, Chen Liangzhong, et al. Study of numerical simulation method for low speed flow with DBD plasma[J]. Acta Aerodynamica Sinica, 2011, 29(2): 129-134, 162 doi: 10.3969/j.issn.0258-1825.2011.02.001
    [11]
    Moreau E, Debien A, Benard N, et al. Nanosecond-pulsed dielectric barrier discharge plasma actuator for airflow control along an NACA0015 airfoil at high Reynolds number[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2803-2811. doi: 10.1109/TPS.2016.2603226
    [12]
    Pendleton S J, Kastner J, Gutmark E, et al. Surface streamer discharge for plasma flow control using nanosecond pulsed power[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2072-2073. doi: 10.1109/TPS.2011.2138166
    [13]
    李志军, 张雅雯, 高迎慧, 等. 级联型高压重复频率微秒脉冲源的研制[J]. 强激光与粒子束, 2019, 31:085001. (Li Zhijun, Zhang Yawen, Gao Yinghui, et al. Development of cascade high voltage repetitive frequency microsecond pulse power supply[J]. High Power Laser and Particle Beams, 2019, 31: 085001 doi: 10.11884/HPLPB201931.190040
    [14]
    董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24):35-44. (Dong Shoulong, Yao Chenguo, Yang Nan, et al. The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 35-44
    [15]
    Tang Kai, Wang Wenchun, Yang Dezheng, et al. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 112: 223-227. doi: 10.1016/j.saa.2013.04.050
    [16]
    赵远涛, 张若兵, 王黎明, 等. 双极性脉冲电压下介质阻挡放电及其涤纶表面改性[J]. 高电压技术, 2009, 35(9):2238-2242. (Zhao Yuantao, Zhang Ruobing, Wang Liming, et al. Application of bipolar pulsed power to ADBD and terylene surface modification[J]. High Voltage Engineering, 2009, 35(9): 2238-2242
    [17]
    米彦, 万佳仑, 卞昌浩, 等. 基于磁脉冲压缩的DBD高频双极性纳秒脉冲发生器的设计及其放电特性[J]. 电工技术学报, 2017, 32(24):244-256. (Mi Yan, Wan Jialun, Bian Changhao, et al. Design of DBD high-frequency bipolar nanosecond pulse generator based on magnetic pulse compression system and its discharging characteristics[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 244-256
    [18]
    Elgenedy M A, Darwish A, Ahmed S, et al. A transition arm modular multilevel universal pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 8979-8991. doi: 10.1109/TPEL.2017.2653243
    [19]
    Yao Chenguo, Dong Shoulong, Zhao Yajun, et al. High-frequency composite pulse generator based on full-bridge inverter and soft switching for biological applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2730-2737. doi: 10.1109/TDEI.2016.7736832
    [20]
    熊兰, 杨子康, 胡国辉, 等. 一种采用全固态开关的高压双极性脉冲源[J]. 电机与控制学报, 2015, 19(9):73-80. (Xiong Lan, Yang Zikang, Hu Guohui, et al. One type of high voltage bipolar square pulser based on all-solid-state switch devices[J]. Electric Machines and Control, 2015, 19(9): 73-80
    [21]
    Kim J H, Min B D, Shenderey S, et al. High voltage Marx generator implementation using IGBT stacks[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 931-936. doi: 10.1109/TDEI.2007.4286528
    [22]
    Biela J, Aggeler D, Bortis D, et al. Balancing circuit for a 5-kV/50-ns pulsed-power switch based on SiC-JFET super cascode[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2554-2560. doi: 10.1109/TPS.2011.2169090
    [23]
    王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806. (Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806
    [24]
    Sakamoto T, Akiyama H. Solid-state dual Marx generator with a short pulsewidth[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2649-2653. doi: 10.1109/TPS.2013.2272946
    [25]
    Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
    [26]
    饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33:0450. (Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 0450 doi: 10.11884/HPLPB202133.200323
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views (1361) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return