Citation: | Zhao Zheng, Li Chenjie, Zhang Xing, et al. Research progress on evolution phenomena and mechanisms of repetitively pulsed streamer discharge[J]. High Power Laser and Particle Beams, 2021, 33: 065002. doi: 10.11884/HPLPB202133.210083 |
[1] |
邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
|
[2] |
李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10):1252-1273. (Li Yinghong, Wu Yun. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252-1273 doi: 10.1360/SST-2020-0111
|
[3] |
Li Yao, Yang Dezheng, Qiao Junjie, et al. The dynamic evolution and interaction with dielectric material of the discharge in packed bed reactor[J]. Plasma Sources Science and Technology, 2020, 29: 055004. doi: 10.1088/1361-6595/ab844e
|
[4] |
张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF6废气综述[J]. 电工技术学报, 2016, 31(24):16-24. (Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue. A review of degradation of SF6 waste by low temperature plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 16-24
|
[5] |
Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Plasma-activated water: generation, origin of reactive species and biological applications[J]. Journal of Physics D: Applied Physics, 2020, 53: 303001. doi: 10.1088/1361-6463/ab81cf
|
[6] |
Mizuno K, Yonetamari K, Shirakawa Y, et al. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice[J]. Journal of Physics D: Applied Physics, 2017, 50: 12LT01. doi: 10.1088/1361-6463/aa5dbb
|
[7] |
Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments[J]. Physics Reports, 2014, 540(3): 123-166. doi: 10.1016/j.physrep.2014.02.006
|
[8] |
戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
|
[9] |
梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
|
[10] |
Nijdam S, Teunissen J, Ebert U. The physics of streamer discharge phenomena[J]. Plasma Sources Science and Technology, 2020, 29: 103001. doi: 10.1088/1361-6595/abaa05
|
[11] |
Zhao Zheng, Li Jiangtao. Repetitively pulsed gas discharges: memory effect and discharge mode transition[J]. High Voltage, 2020, 5(5): 569-582. doi: 10.1049/hve.2019.0383
|
[12] |
Pai D Z, Lacoste D A, Laux C O. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure[J]. Journal of Applied Physics, 2010, 107: 093303. doi: 10.1063/1.3309758
|
[13] |
Zhang Cheng, Shao Tao, Yan Ping, et al. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air[J]. Plasma Sources Science and Technology, 2014, 23: 035004. doi: 10.1088/0963-0252/23/3/035004
|
[14] |
Tholin F, Bourdon A. Influence of the external electrical circuit on the regimes of a nanosecond repetitively pulsed discharge in air at atmospheric pressure[J]. Plasma Physics and Controlled Fusion, 2015, 57: 014016. doi: 10.1088/0741-3335/57/1/014016
|
[15] |
Ding C, Khomenko A Y, Shcherbanev S A, et al. Filamentary nanosecond surface dielectric barrier discharge. Experimental comparison of the streamer-to-filament transition for positive and negative polarities[J]. Plasma Sources Science and Technology, 2019, 28: 085005. doi: 10.1088/1361-6595/ab2d7a
|
[16] |
Nijdam S, Wormeester G, Van Veldhuizen E M, et al. Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture[J]. Journal of Physics D: Applied Physics, 2011, 44: 455201. doi: 10.1088/0022-3727/44/45/455201
|
[17] |
Simek M. Determination of N2(A3Σu+) metastable density produced by nitrogen streamers at atmospheric pressure: 2. Experimental verification[J]. Plasma Sources Science and Technology, 2003, 12(3): 454-463. doi: 10.1088/0963-0252/12/3/322
|
[18] |
Nijdam S, Takahashi E, Markosyan A H, et al. Investigation of positive streamers by double-pulse experiments, effects of repetition rate and gas mixture[J]. Plasma Sources Science and Technology, 2014, 23: 025008. doi: 10.1088/0963-0252/23/2/025008
|
[19] |
Tholin F, Bourdon A. Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2013, 46: 365205. doi: 10.1088/0022-3727/46/36/365205
|
[20] |
Shao Tao, Sun Guangsheng, Yan Ping, et al. An experimental investigation of repetitive nanosecond-pulse breakdown in air[J]. Journal of Physics D: Applied Physics, 2006, 39(10): 2192-2197. doi: 10.1088/0022-3727/39/10/030
|
[21] |
Nagaraja S, Yang V, Adamovich I. Multi-scale modelling of pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry[J]. Journal of Physics D: Applied Physics, 2013, 46: 155205. doi: 10.1088/0022-3727/46/15/155205
|
[22] |
Zhao Z, Li J T. Integrated effect on evolution of streamer dynamics under long-term repetitive sub-microsecond pulses in high-pressure nitrogen[J]. Plasma Sources Science and Technology, 2019, 28: 115019. doi: 10.1088/1361-6595/ab556a
|
[23] |
赵义焜, 张国强, 韩冬. 高频变压器用匝间绝缘材料沿面放电特性的实验研究[J]. 电工技术学报, 2019, 34(16):3464-3471. (Zhao Yikun, Zhang Guoqiang, Han Dong. Study on surface discharge characteristics of inter-turn insulation materials in high-frequency transformers[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3464-3471
|
[24] |
Fu Pengyu, Zhao Zhibin, Li Xuebao, et al. The role of time-lag in the surface discharge inception under positive repetitive pulse voltage[J]. Physics of Plasmas, 2018, 25: 093518. doi: 10.1063/1.5048729
|
[25] |
Pejovic M M, Ristic G S. Memory effects in argon, nitrogen, and hydrogen[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1315-1319. doi: 10.1109/TPS.2002.802143
|
[26] |
Pejović M M, Živanović E, Pejović M M, et al. Analysis of processes responsible for the memory effect in air at low pressures[J]. Plasma Sources Science and Technology, 2010, 19: 045021. doi: 10.1088/0963-0252/19/4/045021
|
[27] |
Shao Tao, Sun Guangsheng, Yan Ping, et al. Breakdown phenomena in nitrogen due to repetitive nanosecond-pulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 813-819. doi: 10.1109/TDEI.2007.4286511
|
[28] |
Pai D Z, Lacoste D A, Laux C O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime[J]. Plasma Sources Science and Technology, 2010, 19: 065015. doi: 10.1088/0963-0252/19/6/065015
|
[29] |
邵涛. 重复频率纳秒脉冲气体击穿研究[D]. 北京: 中国科学院研究生院(电工研究所), 2006.
Shao Tao. Study on repetitive nanosecond-pulse breakdown in gases[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006
|
[30] |
Pai D Z, Stancu G D, Lacoste D A, et al. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime[J]. Plasma Sources Science and Technology, 2009, 18: 045030. doi: 10.1088/0963-0252/18/4/045030
|
[31] |
Naidis G V. Simulation of spark discharges in high-pressure air sustained by repetitive high-voltage nanosecond pulses[J]. Journal of Physics D: Applied Physics, 2008, 41: 234017. doi: 10.1088/0022-3727/41/23/234017
|
[32] |
Höft H, Kettlitz M, Becker M M, et al. Breakdown characteristics in pulsed-driven dielectric barrier discharges: influence of the pre-breakdown phase due to volume memory effects[J]. Journal of Physics D: Applied Physics, 2014, 47: 465206. doi: 10.1088/0022-3727/47/46/465206
|
[33] |
Nemschokmichal S, Tschiersch R, Höft H, et al. Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling[J]. The European Physical Journal D, 2018, 72: 89. doi: 10.1140/epjd/e2017-80369-1
|
[34] |
Acker F E, Penney G W. Influence of previous positive streamers on streamer propagation and breakdown in a positive point-to-plane gap[J]. Journal of Applied Physics, 1968, 39(5): 2363-2369. doi: 10.1063/1.1656561
|
[35] |
Hartmann G, Gallimberti I. The influence of metastable molecules on the streamer progression[J]. Journal of Physics D: Applied Physics, 1975, 8(6): 670-680. doi: 10.1088/0022-3727/8/6/010
|
[36] |
蔡新景, 邹晓兵, 王新新. 氮气短间隙的耐受电压和气体密度恢复特性[J]. 高电压技术, 2011, 37(6):1471-1478. (Cai Xinjing, Zou Xiaobing, Wang Xinxin. Recovery of holdoff voltage and gas density in short nitrogen gaps[J]. High Voltage Engineering, 2011, 37(6): 1471-1478
|
[37] |
Tholin F, Bourdon A. Influence of temperature on the glow regime of a discharge in air at atmospheric pressure between two point electrodes[J]. Journal of Physics D: Applied Physics, 2011, 44: 385203. doi: 10.1088/0022-3727/44/38/385203
|
[38] |
Li Y, Van Veldhuizen E M, Zhang G J, et al. Positive double-pulse streamers: how pulse-to-pulse delay influences initiation and propagation of subsequent discharges[J]. Plasma Sources Science and Technology, 2018, 27: 125003. doi: 10.1088/1361-6595/aaf2c6
|
[39] |
Kazemi M R, Sugai T, Tokuchi A, et al. Study of pulsed atmospheric discharge using solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2323-2327. doi: 10.1109/TPS.2017.2707105
|
[40] |
MacGregor S J, Turnbull S M, Tuema F A, et al. Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and DC-charged high-pressure gas switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 110-117. doi: 10.1109/27.602480
|
[41] |
Chen She, Heijmans L C J, Zeng Rong, et al. Nanosecond repetitively pulsed discharges in N2-O2 mixtures: inception cloud and streamer emergence[J]. Journal of Physics D: Applied Physics, 2015, 48: 175201. doi: 10.1088/0022-3727/48/17/175201
|
[42] |
Komuro A, Ono R. Two-dimensional simulation of fast gas heating in an atmospheric pressure streamer discharge and humidity effects[J]. Journal of Physics D: Applied Physics, 2014, 47: 155202. doi: 10.1088/0022-3727/47/15/155202
|
[43] |
Starikovskiy A, Pancheshnyi S, Rakitin A. Periodic pulse discharge self-focusing and streamer-to-spark transition in under-critical electric field[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2011.
|
[44] |
Chen Xiancong, Zhu Yifei, Wu Yun. Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage[J]. Plasma Sources Science and Technology, 2020, 29: 095006. doi: 10.1088/1361-6595/ab8e4e
|
[45] |
Pancheshnyi S. Role of electronegative gas admixtures in streamer start, propagation and branching phenomena[J]. Plasma Sources Science and Technology, 2005, 14(4): 645-653. doi: 10.1088/0963-0252/14/4/002
|
[46] |
Tholin F, Bourdon A. Simulation of the stable ‘quasi-periodic’ glow regime of a nanosecond repetitively pulsed discharge in air at atmospheric pressure[J]. Plasma Sources Science and Technology, 2013, 22(4): 045014. doi: 10.1088/0963-0252/22/4/045014
|
[47] |
Raĭzer Y P. Gas discharge physics[M]. Berlin: Springer-Verlag, 1991.
|
[48] |
Golubovskii Y B, Maiorov V A, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. Journal of Physics D: Applied Physics, 2002, 35(8): 751-761. doi: 10.1088/0022-3727/35/8/306
|
[49] |
Deng Junbo, Matsuoka S, Kumada A, et al. The influence of residual charge on surface discharge propagation[J]. Journal of Physics D: Applied Physics, 2010, 43: 495203. doi: 10.1088/0022-3727/43/49/495203
|
[50] |
Li Chuanyang, Lin Chuanjie, Zhang Bo, et al. Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1152-1166. doi: 10.1109/TDEI.2018.007004
|
[51] |
Guaitella O, Marinov I, Rousseau A. Role of charge photodesorption in self-synchronized breakdown of surface streamers in air at atmospheric pressure[J]. Applied Physics Letters, 2011, 98: 071502. doi: 10.1063/1.3552965
|
[52] |
Winters C, Petrishchev V, Yin Zhiyao, et al. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid/vapor interface[J]. Journal of Physics D: Applied Physics, 2015, 48: 424002. doi: 10.1088/0022-3727/48/42/424002
|
[53] |
李庆民, 刘伟杰, 韩帅, 等. 环氧树脂绝缘高频电热联合老化中局部放电特性分析[J]. 高电压技术, 2015, 41(2):389-395. (Li Qingmin, Liu Weijie, Han Shuai, et al. Analysis on partial discharge characteristics of epoxy resin insulation during high-frequency electrical-thermal aging[J]. High Voltage Engineering, 2015, 41(2): 389-395
|
[54] |
Xie Qing, Ren Jie, Huang He, et al. Aging characteristics of epoxy resin discharged by very fast transient overvoltage in SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 1178-1188. doi: 10.1109/TDEI.2017.005866
|
[55] |
Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 2011, 18: 055702. doi: 10.1063/1.3560599
|
[56] |
Zeng Rong, Zhuang Chijie, Yu Zhanqing, et al. Electric field step in air gap streamer discharges[J]. Applied Physics Letters, 2011, 99: 221503. doi: 10.1063/1.3665633
|
[57] |
吴传奇. 冲击电压下长空气间隙正极性流注放电特性研究[D]. 武汉: 华中科技大学, 2014.
Wu Chuanqi. Research on the characteristics of long air gap positive streamer discharge under impulse voltage[D]. Wuhan: Huazhong University of Science and Technology, 2014
|
[58] |
Nijdam S, Teunissen J, Takahashi E, et al. The role of free electrons in the guiding of positive streamers[J]. Plasma Sources Science and Technology, 2016, 25: 044001. doi: 10.1088/0963-0252/25/4/044001
|
[59] |
Yuan Xuchu, Li Hanwei, Abbas M F, et al. A 3D numerical study of positive streamers interacting with localized plasma regions[J]. Journal of Physics D: Applied Physics, 2020, 53: 425204. doi: 10.1088/1361-6463/ab9e38
|
[60] |
Babaeva N Y, Naidis G V. Modeling of streamer interaction with localized plasma regions[J]. Plasma Sources Science and Technology, 2018, 27: 075018. doi: 10.1088/1361-6595/aad0d9
|
[61] |
Li Chenjie, Huang Zongze, Li Jiangtao, et al. Simulation of the discharge regime transition under repetitive nanosecond pulses in nitrogen at atmospheric pressure[C]//Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). 2020: 9279861.
|
[62] |
Tarasenko V. Runaway electrons in diffuse gas discharges[J]. Plasma Sources Science and Technology, 2020, 29: 034001. doi: 10.1088/1361-6595/ab5c57
|
[63] |
Iza F, Walsh J L, Kong M G. From submicrosecond- to nanosecond-pulsed atmospheric-pressure plasmas[J]. IEEE Transactions on Plasma Science, 2009, 37(7): 1289-1296. doi: 10.1109/TPS.2009.2014766
|
[64] |
Ito T, Kanazawa T, Hamaguchi S. Rapid breakdown mechanisms of open air nanosecond dielectric barrier discharges[J]. Physical Review Letters, 2011, 107: 065002. doi: 10.1103/PhysRevLett.107.065002
|
[65] |
Komuro A, Ono R, Oda T. Effects of pulse voltage rise rate on velocity, diameter and radical production of an atmospheric-pressure streamer discharge[J]. Plasma Sources Science and Technology, 2013, 22: 045002. doi: 10.1088/0963-0252/22/4/045002
|
[66] |
Wang Douyan, Namihira T. Nanosecond pulsed streamer discharges: II. Physics, discharge characterization and plasma processing[J]. Plasma Sources Science and Technology, 2020, 29: 023001. doi: 10.1088/1361-6595/ab5bf6
|
[67] |
Liu Zhengyan, Li Jie, Peng Bangfa, et al. Spatiotemporal analysis of streamer discharge in a wire-to-wire reactor with positive nanosecond pulse supply[J]. Journal of Physics D: Applied Physics, 2020, 53: 465203. doi: 10.1088/1361-6463/abaa16
|
[68] |
Korolev Y D, Mesyats G A. Physics of pulsed breakdown in gases[M]. Yekaterinburg: URO Press, 1998.
|
[69] |
Wang Douyan, Okada S, Matsumoto T, et al. Pulsed discharge induced by nanosecond pulsed power in atmospheric air[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2746-2751. doi: 10.1109/TPS.2010.2052369
|
[70] |
Qi Fei, Li Yiyang, Zhou Rusen, et al. Uniform atmospheric pressure plasmas in a 7 mm air gap[J]. Applied Physics Letters, 2019, 115: 194101. doi: 10.1063/1.5120109
|
[71] |
Huang Bangdou, Takashima K, Zhu Ximing, et al. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges[J]. Journal of Physics D: Applied Physics, 2014, 47: 422003. doi: 10.1088/0022-3727/47/42/422003
|
[72] |
Huang Bangdou, Carbone E, Takashima K, et al. The effect of the pulse repetition rate on the fast ionization wave discharge[J]. Journal of Physics D: Applied Physics, 2018, 51: 225202. doi: 10.1088/1361-6463/aabf2d
|
[73] |
Zhao Z, Huang D D, Wang Y N, et al. Evolution of streamer dynamics and discharge mode transition in high-pressure nitrogen under long-term repetitive nanosecond pulses with different timescales[J]. Plasma Sources Science and Technology, 2019, 28: 085015. doi: 10.1088/1361-6595/ab2b86
|
[74] |
Popov N A. Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges[J]. Plasma Physics Reports, 2001, 27(10): 886-896. doi: 10.1134/1.1409722
|
[75] |
Popov N A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 2011, 44: 285201. doi: 10.1088/0022-3727/44/28/285201
|
[76] |
Mintoussov E I, Pendleton S J, Gerbault F G, et al. Fast gas heating in nitrogen–oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures[J]. Journal of Physics D: Applied Physics, 2011, 44: 285202. doi: 10.1088/0022-3727/44/28/285202
|
[77] |
Xu D A, Lacoste D A, Rusterholtz D L, et al. Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air[J]. Applied Physics Letters, 2011, 99: 121502. doi: 10.1063/1.3641413
|
[78] |
Rusterholtz D L, Lacoste D A, Stancu G D, et al. Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges[J]. Journal of Physics D: Applied Physics, 2013, 46: 464010. doi: 10.1088/0022-3727/46/46/464010
|
[79] |
章程, 顾建伟, 邵涛, 等. 大气压空气中重复频率纳秒脉冲气体放电模式研究[J]. 强激光与粒子束, 2014, 26:045029. (Zhang Cheng, Gu Jianwei, Shao Tao, et al. Discharge mode in the repetitive nanosecond-pulse discharge in atmospheric pressure air[J]. High Power Laser and Particle Beams, 2014, 26: 045029 doi: 10.11884/HPLPB201426.045029
|
[80] |
Shao Tao, Zhang Cheng, Niu Zheng, et al. Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes[J]. Applied Physics Letters, 2011, 98: 021503. doi: 10.1063/1.3540504
|