Liu Huilan, Tang Yichuang, Zhi Yinzhou, et al. Parameters analysis of triangular wave modulation in resonator micro optic gyro[J]. High Power Laser and Particle Beams, 2015, 27: 024148. doi: 10.11884/HPLPB201527.024148
Citation: Dai Hongyu, Shen Hao, Li Li. Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes[J]. High Power Laser and Particle Beams, 2021, 33: 065015. doi: 10.11884/HPLPB202133.210084

Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes

doi: 10.11884/HPLPB202133.210084
  • Received Date: 2021-03-15
  • Rev Recd Date: 2021-05-13
  • Available Online: 2021-06-07
  • Publish Date: 2021-06-15
  • Oxygen is a kind of indispensable component in graphite-electrode spark-gap switch, and it is used to oxidize the graphite vapor formed by the graphite electrode under the impact of high-temperature arcs to prevent the graphite vapor from condensing into solid powder after the arc is extinguished, thus to avoid damage to the switch. To increase the oxidation ratio of the graphite vapor, the influence of background gas composition and oxygen concentration on graphite oxidation reaction is studied in this paper. The effect of dilution gases N2, Ar, and He on characteristics of the oxidation reaction are studied. Meanwhile, on the basis of the traditional air-like gas (80%N2+20%O2), the carbon oxidation ratio in the case with 40% and 60% oxygen concentration are studied. According to the thermodynamic parameters and transport coefficients of different gases, the arc temperature characteristics are obtained through the magnetohydrodynamic calculation. The thermal energy intensity at the interface between the arc and the electrode is used as the basis for evaluating the mass loss rate of the graphite electrode. Experimental results show that as the oxygen concentration increases, the oxidation ratio of graphite vapor gradually increases. However when the oxygen concentration is higher than 40%, there is a risk of combustion of the graphite electrode. When the oxygen concentration is kept at 20%, the mass-loss rate of the electrode is smaller when Ar is used as the dilution gas, and the carbon vapor is oxidized more fully in the arc. This indicates that compared with the traditional insulation gas, replacing the dilution gas with Ar or increasing the oxygen concentration to around 40% can both improve the carbon-oxygen reaction efficiency and reduce the residual carbon impurities of the graphite-electrode spark-gap switch.
  • [1]
    郭良福, 李黎, 赖贵友, 等. 石墨型高能两电极气体开关[J]. 强激光与粒子束, 2010, 22(12):3034-3038. (Guo Liangfu, Li Li, Lai Guiyou, et al. High power graphite two-electrode spark gap switch[J]. High Power Laser and Particle Beams, 2010, 22(12): 3034-3038 doi: 10.3788/HPLPB20102212.3034
    [2]
    俞斌, 李黎, 葛亚峰, 等. 大功率能源模块中的石墨电极气体开关系统[J]. 强激光与粒子束, 2014, 26:045021. (Yu Bin, Li Li, Ge Yafeng, et al. Graphite-electrode gas-switching system in high energy module[J]. High Power Laser and Particle Beams, 2014, 26: 045021 doi: 10.11884/HPLPB201426.045021
    [3]
    Takikawa H, Tao Y, Miyano R, et al. Formation and deformation of multiwall carbon nanotubes in arc discharge[J]. Japanese Journal of Applied Physics, 2001, 40(5R): 3414-3418.
    [4]
    Arora N, Sharma N N. Arc discharge synthesis of carbon nanotubes: comprehensive review[J]. Diamond and Related Materials, 2014, 50: 135-150. doi: 10.1016/j.diamond.2014.10.001
    [5]
    Dai Hongyu, Li L, Peng Mingyang, et al. Carbon-oxygen reaction efficiency in air gap switch with graphite electrodes under high current pulse discharge[J]. Physics of Plasmas, 2017, 24: 123512. doi: 10.1063/1.5009281
    [6]
    Dai Hongyu, Li L, Wu Haibo, et al. Characteristics of N2/O2 reaction in spark gap switch: the effect of high-current pulsed arc[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 492-500. doi: 10.1109/TDEI.2019.007691
    [7]
    刘现飞, 唐钊, 刘轩东. 气体介质对多间隙气体开关电晕均压与自击穿特性的影响[J]. 强激光与粒子束, 2020, 32:025012. (Liu Xianfei, Tang Zhao, Liu Xuandong. Effect of gas medium on corona discharge for voltage balance and self-breakdown characteristics in multi-gaps gas switch[J]. High Power Laser and Particle Beams, 2020, 32: 025012 doi: 10.11884/HPLPB202032.0358
    [8]
    Goto K S, Han K H, Pierre G R S. A review of oxidation kinetics of carbon fibre-carbon matrix composites at high temperature[J]. Materials Science and Engineering, 1987, 88: 347.
    [9]
    Murphy A B. Thermal plasmas in gas mixtures[J]. Journal of Physics D: Applied Physics, 2001, 34(20): R151-R173. doi: 10.1088/0022-3727/34/20/201
    [10]
    李兴文, 贾申利, 张博雅. 气体开关电弧物性参数计算及特性仿真研究与应用[J]. 高电压技术, 2020, 46(3):757-771. (Li Xingwen, Jia Shenli, Zhang Boya. Research and application on physical parameters calculation and behavior simulation of gas switching arc[J]. High Voltage Engineering, 2020, 46(3): 757-771
    [11]
    Cai X Y, Dong B L, Lin S B, et al. Heat source characteristics of ternary-gas-shielded tandem narrow-gap GMAW[J]. Materials, 2019, 12: 1397. doi: 10.3390/ma12091397
    [12]
    李兴文, 吕启深, 田甜, 等. 直流空气电弧作用下触头烧蚀特性[J]. 高电压技术, 2020, 46(6):1970-1977. (Li Xingwen, Lv Qishen, Tian Tian, et al. Contact erosion characteristics under direct current air arc[J]. High Voltage Engineering, 2020, 46(6): 1970-1977
    [13]
    李美, 王一玮, 李林, 等. 绝缘气体对开关柜内部故障燃弧压力上升的影响[J]. 电气工程学报, 2020, 15(2):11-17. (Li Mei, Wang Yiwei, Li Lin, et al. Influence of insulating gas on pressure rise due to internal fault arcing in switchgear[J]. Journal of Electrical Engineering, 2020, 15(2): 11-17 doi: 10.11985/2020.02.002
    [14]
    Punekar G S, Thejovathi G, Kishor N K. Simulation study of Borda’s profile & parallel plane electrode to assess electric field uniformity[C]//IEEE 8th International Conference on Electromagnetic Interference and Compatibility. 2003: 371-374.
    [15]
    刘毅, 林福昌, 冯希波, 等. 能源模块磁开关工作特性分析[J]. 中国电机工程学报, 2012, 32(36):142-148. (Liu Yi, Lin Fuchang, Feng Xibo, et al. Working characteristics analysis of magnetic switch in energy module[J]. Proceedings of the CSEE, 2012, 32(36): 142-148
    [16]
    Kramida A, Ralchenko Y, Reader J, et al. NIST atomic spectra database (version 5.0)[R]. 2012.
    [17]
    Griem H R. High-density corrections in plasma spectroscopy[J]. Physical Review, 1962, 128(3): 997-1003. doi: 10.1103/PhysRev.128.997
    [18]
    Hirschfelder J O, Curtiss C F, Bird R B. Molecular theory of gases and liquids[M]. New York: John Wiley & Sons, Inc., 1954.
    [19]
    Devoto R S. Simplified expressions for the transport properties of ionized monatomic gases[J]. The Physics of Fluids, 1967, 10(10): 2105-2112. doi: 10.1063/1.1762005
    [20]
    曾晗, 林福昌, 蔡礼, 等. 石墨电极烧蚀机理及实验[J]. 电工技术学报, 2013, 28(1):43-49, 86. (Zeng Han, Lin Fuchang, Cai Li, et al. Mechanism and experiment of graphite electrode erosion[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 43-49, 86 doi: 10.3969/j.issn.1000-6753.2013.01.007
    [21]
    付钰伟, 王小华, 高青青, 等. 火花放电下SF6特征分解产物演化特性研究[J]. 高压电器, 2020, 56(5):13-17, 23. (Fu Yuwei, Wang Xiaohua, Gao Qingqing, et al. Evolution feature of characteristic SF6 decomposition products under spark discharge[J]. High Voltage Apparatus, 2020, 56(5): 13-17, 23
  • Relative Articles

    [1]Han Caozheng, Wang Wubin, Zhao Wei, Chen Ruitao, Ma Xingwang, Li Yanling, Bai Jiaqi. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36(12): 123001. doi: 10.11884/HPLPB202436.240219
    [2]Zhang Jingqi, Qin Feng, Gao Yuan, Zhong Shouhong, Wang Zhen. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35(2): 023004. doi: 10.11884/HPLPB202335.220257
    [3]Fan Yuqing, Cheng Erwei, Wei Ming, Zhang Qinglong, Chen Yazhou. Analysis on the interference effect of electrostatic discharge of GNSS receiver on aircraft[J]. High Power Laser and Particle Beams, 2019, 31(12): 123201. doi: 10.11884/HPLPB201931.190268
    [4]Xie Xining, Hu Xiaofeng. Design of an electrostatic discharge simulator[J]. High Power Laser and Particle Beams, 2019, 31(6): 063205. doi: 10.11884/HPLPB201931.190057
    [5]Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 063203. doi: 10.11884/HPLPB201931.190035
    [6]Wang Xiangyu, Fan Yajun, Qiao Hanqing, Lu Yanlei, Zhu Yufeng, Xia Wenfeng, Zhang Xingjia. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31(11): 115001. doi: 10.11884/HPLPB201931.190125
    [7]Wang Yajie, He Pengjun, Jing Xiaopeng, Tie Weihao, Xie Jiangyuan, Zhao Chengguang. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30(9): 095005. doi: 10.11884/HPLPB201830.170398
    [8]Wu Huancheng, Hu Jinguang, Zhong Longquan, Lin Jiangchuan. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29(09): 093203. doi: 10.11884/HPLPB201729.170088
    [9]Zhang Xijun, Zhang Liting, Wang Shuping, Zhao Min. Effect of length of transmission line on performance test of electrostatic discharge protection device[J]. High Power Laser and Particle Beams, 2017, 29(10): 103205. doi: 10.11884/HPLPB201729.170156
    [10]Li Yong, Xie Haiyan, Yang Zhiqiang, Xia Hongfu, Xuan Chun, Wang Jianguo. Parameter extraction of transient voltage suppressor diode[J]. High Power Laser and Particle Beams, 2016, 28(03): 033202. doi: 10.11884/HPLPB201628.033202
    [11]Yang Cheng, Liu Peiguo, Liu Jibin, Zhou Dongming, Li Gaosheng. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(04): 1045-1049.
    [12]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]xiong ling-ling, lü bai-da. Theoretical models describing far-field intensity distributions of laser diode[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [14]qi shu-feng, liu shang-he, liu hong-bing, yang jie. Latent failure of 2SC3356 caused by electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [15]he qi-yuan, liu shang-he, xu xiao-ying, wang shao-guang, chen jing-ping. Influence of approaching speed on air electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [16]yang jie, wang chang-he, liu shang-he. Electromagnetic pulse sensitive ports of micro-wave low-noise transistors[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [17]quan lin, zhang yong-min, tu jing, chen zhi-hua, lai ding-guo, fan ya-jun, shao hao. Stability of pulse X-ray spectrum field generated by intense diode[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [18]bi zeng-jun, sheng song-lin, sun chi, liu shang-he. A numerical model of electromagnetic fields generated by electrostatic discharge spark[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
    [19]hou min-sheng, wang shu-ping. Simulator of electromagnetism pulse produced during electrostatic discharge[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 王淼,李嘉豪,汤浩,郭亚. ESD保护电路在HDMI板级信号完整性中的影响分析及其布局优化研究. 现代电子技术. 2024(08): 68-74 .
    2. 付路,阎照文,刘玉竹,苏丽轩. 基于分段线性模型针对传输线脉冲瞬态干扰信号的芯片协同防护设计方法. 电子与信息学报. 2023(09): 3263-3271 .
    3. 付路,阎照文,刘玉竹,苏丽轩. 芯片传导瞬态电磁干扰下的防护特性研究. 安全与电磁兼容. 2022(04): 38-42+66 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 76.2 %META: 76.2 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %China: 0.1 %China: 0.1 %Hamtramck: 0.2 %Hamtramck: 0.2 %India: 0.1 %India: 0.1 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.3 %上海: 0.3 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊犁: 0.1 %伊犁: 0.1 %北京: 22.2 %北京: 22.2 %台州: 0.4 %台州: 0.4 %咸阳: 0.1 %咸阳: 0.1 %安康: 0.2 %安康: 0.2 %巴拿马城: 0.1 %巴拿马城: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.1 %广州: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 0.5 %张家口: 0.5 %成都: 0.6 %成都: 0.6 %新乡: 0.3 %新乡: 0.3 %昆明: 0.9 %昆明: 0.9 %普洱: 0.1 %普洱: 0.1 %杭州: 1.9 %杭州: 1.9 %桂林: 0.1 %桂林: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %江门: 0.5 %江门: 0.5 %深圳: 11.0 %深圳: 11.0 %湖州: 0.4 %湖州: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %约翰内斯堡: 0.1 %约翰内斯堡: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 8.7 %芒廷维尤: 8.7 %芝加哥: 0.4 %芝加哥: 0.4 %衢州: 0.6 %衢州: 0.6 %西宁: 40.1 %西宁: 40.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.0 %郑州: 1.0 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.2 %长治: 0.2 %雅安: 0.1 %雅安: 0.1 %首尔: 0.2 %首尔: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他ChinaHamtramckIndiaUnited KingdomUnited States[]上海中山临汾丹东丽水伊犁北京台州咸阳安康巴拿马城布鲁塞尔常州常德广州弗吉张家口成都新乡昆明普洱杭州桂林桃园武汉江门深圳湖州福州秦皇岛红河约翰内斯堡绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城连云港郑州都伯林重庆长沙长治雅安首尔马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (1339) PDF downloads(41) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return