Volume 33 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Zhu Zhenyu, Wu Shuqun, Bian Weijie, et al. Influence of transformer’s parasitic parameters and load characteristics on high-voltage pulse waveform[J]. High Power Laser and Particle Beams, 2021, 33: 065007. doi: 10.11884/HPLPB202133.210086
Citation: Zhu Zhenyu, Wu Shuqun, Bian Weijie, et al. Influence of transformer’s parasitic parameters and load characteristics on high-voltage pulse waveform[J]. High Power Laser and Particle Beams, 2021, 33: 065007. doi: 10.11884/HPLPB202133.210086

Influence of transformer’s parasitic parameters and load characteristics on high-voltage pulse waveform

doi: 10.11884/HPLPB202133.210086
  • Received Date: 2021-03-16
  • Rev Recd Date: 2021-05-24
  • Available Online: 2021-06-09
  • Publish Date: 2021-06-15
  • The experimental platform of bipolar high-voltage pulse power supply with an output voltage amplitude of 0−20 kV and pulse repetition rate of 0.25−20 kHz is constructed. The influence of parasitic parameters of the pulse transformer and load characteristics on the output pulse waveform is studied. By the complex frequency domain analysis method, the effects of parasitic parameters of the transformer on the rising edge, flat top, and falling edge of the output pulse wave are analyzed theoretically, which are further indirectly verified by changing the winding scheme of the transformer. It is found that the larger the distributed capacitance and leakage inductance of the transformer are, the longer the rising time and falling time of the voltage pulse are, and the larger the overshoot voltage is. An optimization winding scheme of the pulse transformer is proposed in that the secondary winding is evenly and densely wound, the primary winding is evenly and loosely wound, and the number of turns is as high as possible. Furthermore, the influence of load characteristics on the output high-voltage pulse waveform is analyzed. (1) When the resistance increases (5−50 kΩ), the overshoot voltage increases, and the rising time and falling time of the voltage pulse decreases. (2) When a resistor is connected in series with small capacitors, the overshoot voltage increases significantly. If the capacitance is higher than a certain value, the output pulse waveform will be the same as that in the case of a pure resistor. (3) When a resistor is connected in series with an inductor, the falling time of the voltage pulse becomes longer.
  • loading
  • [1]
    邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [2]
    熊紫兰, 卢新培, 鲜于斌, 等. 大气压低温等离子体射流及其生物医学应用[J]. 科技导报, 2010, 28(15):97-105. (Xiong Zilan, Lu Xinpei, Xian Yubin, et al. Atmospheric pressure low temperature plasma jets and their biomedical applications[J]. Science & Technology Review, 2010, 28(15): 97-105
    [3]
    米彦, 苟家喜, 刘露露, 等. 脉冲介质阻挡放电等离子体改性对BN/EP复合材料击穿强度和热导率的影响[J]. 电工技术学报, 2020, 35(18):3949-3959. (Mi Yan, Gou Jiaxi, Liu Lulu, et al. Effect of pulse dielectric barrier discharge plasma modification on breakdown strength and thermal conductivity of BN/EP composites[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3949-3959
    [4]
    Zhao Guangyin, Li Yinghong, Liang Hua, et al. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators[J]. Chinese Journal of Aeronautics, 2015, 28(2): 368-376. doi: 10.1016/j.cja.2014.12.036
    [5]
    聂万胜, 周思引, 车学科. 纳秒脉冲放电等离子体助燃技术研究进展[J]. 高电压技术, 2017, 43(6):1749-1758. (Nie Wansheng, Zhou Siyin, Che Xueke. Review of plasma assisted combustion technology by nanosecond pulsed discharge[J]. High Voltage Engineering, 2017, 43(6): 1749-1758
    [6]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [7]
    Deng Jianjun, Shi Jinshui, Xie Weiping, et al. Overview of pulsed power research at CAEP[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2760-2765. doi: 10.1109/TPS.2015.2452192
    [8]
    王秉卓, 司剑飞, 于春风. 基于脉冲功率技术的高压电场感应取能设计[J]. 电力工程技术, 2019, 38(6):160-166. (Wang Bingzhuo, Si Jianfei, Yu Chunfeng. A design of high voltage electric-field induction energy-acquisition based on pulsed power technology[J]. Electric Power Engineering Technology, 2019, 38(6): 160-166
    [9]
    刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [10]
    Liu Kefu, Luo Yan, Qiu Jian. A repetitive high voltage pulse adder based on solid state switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1076-1080. doi: 10.1109/TDEI.2009.5211857
    [11]
    饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33:025001. (Rao Junfeng, Li Encheng, Wang Yonggang, et al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001
    [12]
    王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806. (Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806
    [13]
    饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001. (Rao Junfeng, Li Chenjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001 doi: 10.11884/HPLPB201931.190005
    [14]
    Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
    [15]
    Redondo L M, Silva J F, Margato E. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (<1 kV) and series connected step-up (1:10) transformers[J]. Review of Scientific Instruments, 2007, 78: 034702. doi: 10.1063/1.2709743
    [16]
    Wang Xia, Huang Qinghua, Xiong Lin, et al. A compact all-solid-state repetitive pulsed power modulator based on Marx generator and pulse transformer[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 2072-2078. doi: 10.1109/TPS.2018.2837021
    [17]
    Wang Yonggang, Tong Liqing, Liu Kefu, et al. Repetitive high-voltage pulse modulator using bipolar Marx generator combined with pulse transformer[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3340-3347. doi: 10.1109/TPS.2018.2844328
    [18]
    Wu Zhaokang, Chen Xiyou, Mu Xianmin. Bipolar Marx circuit based on double transformers[C]//2020 5th Asia Conference on Power and Electrical Engineering (ACPEE). 2020: 1875-1879.
    [19]
    孙毅超, 丁楠木, 王琦. 基于共载波调制的功率复合型模块化多电平固态变压器[J]. 电力工程技术, 2020, 39(4):2-8. (Sun Yichao, Ding Nanmu, Wang Qi. Power integrated modular multilevel solid-state transformer with common carrier modulation[J]. Electric Power Engineering Technology, 2020, 39(4): 2-8
    [20]
    高旭泽, 段然, 任明, 等. 长段电缆中局部放电脉冲信号的传输特性及耦合研究[J]. 电力工程技术, 2020, 39(5):2-9. (Gao Xuze, Duan Ran, Ren Ming, et al. Transmission characteristics and coupling of partial discharge pulse signals in long cables[J]. Electric Power Engineering Technology, 2020, 39(5): 2-9
    [21]
    郝玲艳, 李清泉, 秦冰阳, 等. 纳秒脉冲电源作用下沿面介质阻挡放电等离子体激励器的特性[J]. 高电压技术, 2016, 42(9):2936-2942. (Hao Lingyan, Li Qingquan, Qin Bingyang, et al. Characteristics of surface dielectric barrier discharge plasma actuator under the nanosecond pulse voltage[J]. High Voltage Engineering, 2016, 42(9): 2936-2942
    [22]
    王瑞华. 脉冲变压器设计[M]. 北京: 科学出版社, 1996.

    Wang Ruihua. Design of pulse transformer[M]. Beijing: Science Press, 1996
    [23]
    ANSI/IEEE Std 390-1987, IEEE standard for pulse transformers[S].
    [24]
    Bortis D, Ortiz G, Kolar J W, et al. Design procedure for compact pulse transformers with rectangular pulse shape and fast rise times[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1171-1180. doi: 10.1109/TDEI.2011.5976112
    [25]
    Redondo L M, Silva J F, Margato E. Pulse shape improvement in core-type high-voltage pulse transformers with auxiliary windings[J]. IEEE Transactions on Magnetics, 2007, 43(5): 1973-1982. doi: 10.1109/TMAG.2006.888744
    [26]
    Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [27]
    章程, 方志, 赵龙章, 等. 基于SIMULINK的介质阻挡放电的仿真[J]. 高压电器, 2007, 43(3):218-221. (Zhang Cheng, Fang Zhi, Zhao Longzhang, et al. Simulation of dielectric barrier discharge using SIMULINK[J]. High Voltage Apparatus, 2007, 43(3): 218-221 doi: 10.3969/j.issn.1001-1609.2007.03.019
    [28]
    郝世强, 刘星亮, 李武华, 等. 介质阻挡放电的分段负载模型和断续模式能量压缩方法[J]. 高电压技术, 2018, 44(9):3058-3067. (Hao Shiqiang, Liu Xingliang, Li Wuhua, et al. Discontinuous-current-mode energy compression method of dielectric barrier discharge with piecewise load model[J]. High Voltage Engineering, 2018, 44(9): 3058-3067
    [29]
    祁泽武, 张伟, 李平林, 等. DBD高频高压放电电源的设计及其放电特性[J]. 高电压技术, 2016, 42(3):807-812. (Qi Zewu, Zhang Wei, Li Pinglin, et al. Design of DBD high-frequency high-voltage power supply and its discharging characteristics[J]. High Voltage Engineering, 2016, 42(3): 807-812
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1376) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return