Citation: | Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091 |
[1] |
Akre R, Dowell D, Emma P, et al. Commissioning the linac coherent light source injector[J]. Physical Review Special Topics-Accelerators and Beams, 2008, 11: 030703. doi: 10.1103/PhysRevSTAB.11.030703
|
[2] |
Zhu Pengfei, Zhu Y, Hidaka Y, et al. Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17: 063004. doi: 10.1088/1367-2630/17/6/063004
|
[3] |
Xiang D, Fu F, Zhang J, et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 759: 74-82.
|
[4] |
Yang Jinfeng, Kondoh T, Kozawa T, et al. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique[J]. Radiation Physics and Chemistry, 2006, 75(9): 1034-1040. doi: 10.1016/j.radphyschem.2005.09.016
|
[5] |
Chen Han, Yan Lixin, Tian Qili, et al. Commissioning the photoinjector of a gamma-ray light source[J]. Physical Review Accelerators and Beams, 2019, 22: 053403. doi: 10.1103/PhysRevAccelBeams.22.053403
|
[6] |
Kim K J. RF and space-charge effects in laser-driven RF electron guns[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 275(2): 201-218. doi: 10.1016/0168-9002(89)90688-8
|
[7] |
Serafini L, Rosenzweig J B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: mA theory of emittance compensation[J]. Physical Review E, 1997, 55(6): 7565-7590. doi: 10.1103/PhysRevE.55.7565
|
[8] |
Schwarz J, Rambo P K, Smith I C, et al. Simple temporal pulse shaping using two Pockels cells[J]. Optical Engineering, 2005, 44: 094203. doi: 10.1117/1.2052709
|
[9] |
Sharma A K, Patidar R K, Raghuramaiah M, et al. Simple electro-optic technique to generate temporally flat-top laser pulses[J]. Optics Communications, 2011, 284(19): 4596-4600. doi: 10.1016/j.optcom.2011.05.061
|
[10] |
Skeldon M D. Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator[J]. Journal of the Optical Society of America B, 2002, 19(10): 2423-2426. doi: 10.1364/JOSAB.19.002423
|
[11] |
Field J J, Durfee III C G, Squier J A, et al. Quartic-phase-limited grism-based ultrashort pulse shaper[J]. Optics Letters, 2007, 32(21): 3101-3103. doi: 10.1364/OL.32.003101
|
[12] |
Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 2000, 71(5): 1929-1960. doi: 10.1063/1.1150614
|
[13] |
Weiner A M. Ultrafast optical pulse shaping: a tutorial review[J]. Optics Communications, 2011, 284(15): 3669-3692. doi: 10.1016/j.optcom.2011.03.084
|
[14] |
Loos H, Dowell D, Gilevich S, et al. Temporal E-beam shaping in an S-band accelerator[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 642-644.
|
[15] |
Vicario C, Ghigo A, Cialdi S, et al. Laser temporal pulse shaping experiment for SPARC photoinjector[R]. CARE-Conf-04-030-PHIN, 2004.
|
[16] |
Park Y, Asghari M H, Ahn T J, et al. Transform-limited picosecond pulse shaping based on temporal coherence synthesization[J]. Optics Express, 2007, 15(15): 9584-9599. doi: 10.1364/OE.15.009584
|
[17] |
Wang X T, Feng L, Lan T, et al. Drive laser temporal shaping techniques for Shanghai soft X-ray free electron laser[C]//39th International Free Electron Laser Conference. 2019: 466-468.
|
[18] |
Sharma A K, Tsang T, Rao T. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 033501. doi: 10.1103/PhysRevSTAB.12.033501
|
[19] |
Wang Dong, Yan Lixin, Huang Wenhui. UV Pulse shaping with α-BBO crystals for the photocathode RF gun[C]//Proceedings of the 7th International Particle Accelerator Conference. 2016: 4079-4081.
|
[20] |
Laskin A, Laskin V. Imaging techniques with refractive beam shaping optics[C]//Proceedings of SPIE 8490, Laser Beam Shaping XIII. 2012: 84900J.
|
[21] |
Laskin A, Laskin V. Beam shaping in high-power laser systems with using refractive beam shapers[C]//Proceedings of SPIE 8433, Laser Sources and Applications. 2012: 84330N.
|
[22] |
Halavanau A, Ha G, Qiang G, et al. Microlens array laser transverse shaping technique for photoemission electron source[DB/OL]. arXiv preprint arXiv: 1609.01661, 2016.
|
[23] |
Jin Yuhua, Hassan A, Jiang Yijian. Freeform microlens array homogenizer for excimer laser beam shaping[J]. Optics Express, 2016, 24(22): 24846-24858. doi: 10.1364/OE.24.024846
|
[24] |
Tomizawa H, Dewa H, Taniuchi T, et al. Adaptive 3-D UV-laser pulse shaping system to minimize emittance for photocathode RF gun and new laser incidence system[C]//Proceedings of FEL. 2007: 298-305.
|
[25] |
Gross M, Qian H J, Boonpornprasert P, et al. Emittance reduction of RF photoinjector generated electron beams by transverse laser beam shaping[J]. Journal of Physics:Conference Series, 2019, 1350: 012046. doi: 10.1088/1742-6596/1350/1/012046
|
[26] |
Zhou Feng, Brachmann A, Emma P, et al. Impact of the spatial laser distribution on photocathode gun operation[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 090701. doi: 10.1103/PhysRevSTAB.15.090701
|
[1] | Cai Jinchi, Hu Linlin, Ma Guowu, Chen Hongbin, Jin Xiao, Chen Huaibi. Theoretical method for fast optimization of rectangular transition structure in folded waveguide devices[J]. High Power Laser and Particle Beams, 2015, 27(05): 053101. doi: 10.11884/HPLPB201527.053101 |
[2] | Cai Jinchi, Hu Linlin, Ma Guowu, Chen Hongbin, Jin Xiao, Chen Huaibi. Design and experimental study of beam optical system for 220 GHz folded waveguide BWO[J]. High Power Laser and Particle Beams, 2015, 27(04): 043101. doi: 10.11884/HPLPB201527.043101 |
[3] | Xie Fuqiang, Ding Guifu, Zhao Xiaolin, Cheng Ping. Design, fabrication and characterization of a sheet-beam 140 GHz folded waveguide based on multi-step SU-8 UV-LIGA[J]. High Power Laser and Particle Beams, 2015, 27(08): 083101. doi: 10.11884/HPLPB201527.083101 |
[4] | Zhou Quanfeng, Song Rui, Lei Wenqiang, Jiang Yi, Hu Peng, Yan Lei, Ma Guowu, Chen Hongbin. Design and test of wideband 0.22 THz folded-waveguide travelling wave tube[J]. High Power Laser and Particle Beams, 2015, 27(11): 113102. doi: 10.11884/HPLPB201527.113102 |
[5] | Zhu Xiurong, Zhou Bin, Du Ai, Li Xiaofen. Fabrication of cylindrical shock wave tube for ICF hydrodynamic instability experiments[J]. High Power Laser and Particle Beams, 2014, 26(02): 022004. doi: 10.3788/HPLPB201426.022004 |
[6] | Yan Shengmei, Su Wei, Wang Yajun, Chen Zhang, Jin Dazhi, Xiang Wei. Theoretical analysis and numerical simulation of parallel multi-beam THz folded waveguide traveling-wave tube[J]. High Power Laser and Particle Beams, 2014, 26(08): 083105. doi: 10.11884/HPLPB201426.083105 |
[7] | Jiang Yi, Lei Wenqiang, Hu Linlin, Hu Peng, Yan Lei, Zhou Quanfeng, Ma Guowu, Chen Hongbin. Design and experiments of 0.14 THz traveling-wave tubes[J]. High Power Laser and Particle Beams, 2014, 26(12): 123101. doi: 10.11884/HPLPB201426.123101 |
[8] | Wang Shaomeng, Hou Yan, Wei Yanyu, Duan Zhaoyun, Gong Yubin. Study on 800 V traveling-wave tube[J]. High Power Laser and Particle Beams, 2013, 25(07): 1613-1614. doi: 10.3788/HPLPB20132507.1613 |
[9] | Xu Ao, Hu Linlin, Chen Hongbin, Yan Lei, Zhou Chuanming. S-parameter characteristics in THz folded waveguide slow wave structures[J]. High Power Laser and Particle Beams, 2013, 25(04): 968-972. |
[10] | Chen Zhang, Wang Yajun. Design of 0.14 THz watt-level folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2013, 25(06): 1483-1488. doi: 10.3788/HPLPB20132506.1483 |
[11] | Cai Jun, Feng Jinjun, Hu Yinfu, Wu Xianping, Tang Ye, Du Yinghua, Pan Pan, Liu Jingkai. Oscillation suppression for W-band folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2013, 25(05): 1195-1199. doi: 10.3788/HPLPB20132505.1195 |
[12] | Liu Yang, Xu Jin, Wei Yanyu, Lai Jianqiang, Xu Xiong, Huang Mingzhi, Tang Tao, Gong Yubin. V-band high-power sheet-beam folded-waveguide traveling-wave tube[J]. High Power Laser and Particle Beams, 2012, 24(11): 2698-2702. doi: 10.3788/HPLPB20122411.2698 |
[13] | Tian Yanyan, Yue Lingna, Xu Jin, Wang Wenxiang, Xu Xiong, Wei Yanyu, Gong Yubin. Transition waveguide for traveling wave tubes with folded rectangular groove waveguide[J]. High Power Laser and Particle Beams, 2012, 24(11): 2693-2697. doi: 10.3788/HPLPB20122411.2693 |
[14] | wang yajun, chen zhang, cheng yanlin, shi zhigui, yin hairong. 220 GHz folded waveguide slow-wave structure[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- . |
[15] | gong huarong, gong yubin, tang tao, xu jin, wang wenxiang. Design of sever for folded waveguide traveling wave tubes[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[16] | tang tao, gong huarong, gong yubin, wang wenxiang. Design of transition waveguide for millimeter wave folded waveguide traveling wave tubes[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[17] | hu yulu, yang zhonghai, li bin, li jianqing, ma shanshan, huang tao, jin xiaolin. Analysis of static trajectories in traveling wave tubes[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- . |
[18] | zhu zhao-jun, jia bao-fu, luo zheng-xiang, wang jian. Perturbation experiment method for helix traveling-wave tube interaction impedance measurement[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- . |
[19] | zhu mei, wang e-feng, feng jin-jun, . Characteristic study of traveling wave tube with slow synchronous wave[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- . |
[20] | yao lie-ming, yang zhong-hai, li bin, huang tao. Thermal analysis of TWT collector[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- . |
1. | 丁文豪,魏望和,朱焜,陶聪,冷劲松. W波段半矩形环螺旋线行波管设计. 机电工程技术. 2025(02): 60-63+82 . ![]() | |
2. | 詹晓非,朱增伟. 太赫兹矩形折叠波导慢波结构铜叠片电铸厚度均匀性研究. 真空电子技术. 2022(04): 67-72 . ![]() | |
3. | 王自成,唐伯俊,谢文球,田宏,董芳. 0.22THz高效率行波管的互作用计算. 强激光与粒子束. 2016(02): 88-93 . ![]() | |
4. | 谢辅强,丁桂甫,赵小林,程萍. 140GHz带状注弯折波导SU-8工艺与传输特性(英文). 强激光与粒子束. 2015(08): 148-154 . ![]() |