Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091
Citation: Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091

Drive laser shaping and transport system for photocathode RF gun

doi: 10.11884/HPLPB202133.210091
Funds:  Hefei Advanced Light Facility R&D Project
More Information
  • To meet the requirements of Hefei Advanced Light Facility (HALF) for high quality injection beam, a photocathode RF gun is developed as the electron source of the injector in the R&D project. To obtaining an electron beam with high qualities, it is necessary to carry out experimental research on drive laser shaping and transport system. For suppressing the beam emittance growth caused by space charge force, the temporal pulse shape is modified by using birefringent crystals, while an aperture is used for spatial pulse shaping. An optical image transport system is designed to achieve high stability of the laser beam position on the photocathode. Detailed design of the optical system is presented in this paper. The experimental result shows that a quasi uniform distribution in the three-dimensional space of laser pulse is obtained, and the laser beam position jitter on the photocathode is less than 4 µm. The performance of the laser pulse meets the experiment requirements.
  • [1]
    Akre R, Dowell D, Emma P, et al. Commissioning the linac coherent light source injector[J]. Physical Review Special Topics-Accelerators and Beams, 2008, 11: 030703. doi: 10.1103/PhysRevSTAB.11.030703
    [2]
    Zhu Pengfei, Zhu Y, Hidaka Y, et al. Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17: 063004. doi: 10.1088/1367-2630/17/6/063004
    [3]
    Xiang D, Fu F, Zhang J, et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 759: 74-82.
    [4]
    Yang Jinfeng, Kondoh T, Kozawa T, et al. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique[J]. Radiation Physics and Chemistry, 2006, 75(9): 1034-1040. doi: 10.1016/j.radphyschem.2005.09.016
    [5]
    Chen Han, Yan Lixin, Tian Qili, et al. Commissioning the photoinjector of a gamma-ray light source[J]. Physical Review Accelerators and Beams, 2019, 22: 053403. doi: 10.1103/PhysRevAccelBeams.22.053403
    [6]
    Kim K J. RF and space-charge effects in laser-driven RF electron guns[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 275(2): 201-218. doi: 10.1016/0168-9002(89)90688-8
    [7]
    Serafini L, Rosenzweig J B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: mA theory of emittance compensation[J]. Physical Review E, 1997, 55(6): 7565-7590. doi: 10.1103/PhysRevE.55.7565
    [8]
    Schwarz J, Rambo P K, Smith I C, et al. Simple temporal pulse shaping using two Pockels cells[J]. Optical Engineering, 2005, 44: 094203. doi: 10.1117/1.2052709
    [9]
    Sharma A K, Patidar R K, Raghuramaiah M, et al. Simple electro-optic technique to generate temporally flat-top laser pulses[J]. Optics Communications, 2011, 284(19): 4596-4600. doi: 10.1016/j.optcom.2011.05.061
    [10]
    Skeldon M D. Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator[J]. Journal of the Optical Society of America B, 2002, 19(10): 2423-2426. doi: 10.1364/JOSAB.19.002423
    [11]
    Field J J, Durfee III C G, Squier J A, et al. Quartic-phase-limited grism-based ultrashort pulse shaper[J]. Optics Letters, 2007, 32(21): 3101-3103. doi: 10.1364/OL.32.003101
    [12]
    Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 2000, 71(5): 1929-1960. doi: 10.1063/1.1150614
    [13]
    Weiner A M. Ultrafast optical pulse shaping: a tutorial review[J]. Optics Communications, 2011, 284(15): 3669-3692. doi: 10.1016/j.optcom.2011.03.084
    [14]
    Loos H, Dowell D, Gilevich S, et al. Temporal E-beam shaping in an S-band accelerator[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 642-644.
    [15]
    Vicario C, Ghigo A, Cialdi S, et al. Laser temporal pulse shaping experiment for SPARC photoinjector[R]. CARE-Conf-04-030-PHIN, 2004.
    [16]
    Park Y, Asghari M H, Ahn T J, et al. Transform-limited picosecond pulse shaping based on temporal coherence synthesization[J]. Optics Express, 2007, 15(15): 9584-9599. doi: 10.1364/OE.15.009584
    [17]
    Wang X T, Feng L, Lan T, et al. Drive laser temporal shaping techniques for Shanghai soft X-ray free electron laser[C]//39th International Free Electron Laser Conference. 2019: 466-468.
    [18]
    Sharma A K, Tsang T, Rao T. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 033501. doi: 10.1103/PhysRevSTAB.12.033501
    [19]
    Wang Dong, Yan Lixin, Huang Wenhui. UV Pulse shaping with α-BBO crystals for the photocathode RF gun[C]//Proceedings of the 7th International Particle Accelerator Conference. 2016: 4079-4081.
    [20]
    Laskin A, Laskin V. Imaging techniques with refractive beam shaping optics[C]//Proceedings of SPIE 8490, Laser Beam Shaping XIII. 2012: 84900J.
    [21]
    Laskin A, Laskin V. Beam shaping in high-power laser systems with using refractive beam shapers[C]//Proceedings of SPIE 8433, Laser Sources and Applications. 2012: 84330N.
    [22]
    Halavanau A, Ha G, Qiang G, et al. Microlens array laser transverse shaping technique for photoemission electron source[DB/OL]. arXiv preprint arXiv: 1609.01661, 2016.
    [23]
    Jin Yuhua, Hassan A, Jiang Yijian. Freeform microlens array homogenizer for excimer laser beam shaping[J]. Optics Express, 2016, 24(22): 24846-24858. doi: 10.1364/OE.24.024846
    [24]
    Tomizawa H, Dewa H, Taniuchi T, et al. Adaptive 3-D UV-laser pulse shaping system to minimize emittance for photocathode RF gun and new laser incidence system[C]//Proceedings of FEL. 2007: 298-305.
    [25]
    Gross M, Qian H J, Boonpornprasert P, et al. Emittance reduction of RF photoinjector generated electron beams by transverse laser beam shaping[J]. Journal of Physics:Conference Series, 2019, 1350: 012046. doi: 10.1088/1742-6596/1350/1/012046
    [26]
    Zhou Feng, Brachmann A, Emma P, et al. Impact of the spatial laser distribution on photocathode gun operation[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 090701. doi: 10.1103/PhysRevSTAB.15.090701
  • Relative Articles

    [1]Shi Yingtong, Xu Hang, Xu Jinqiang, Huang Senlin. Research progress on high-brightness electron source drive laser system[J]. High Power Laser and Particle Beams, 2025, 37(2): 021001. doi: 10.11884/HPLPB202537.240261
    [2]Jiang Shimin, Lu Zhijun, Liu Xingguang, Li Xiao. Study of drive laser shaping system for C-band photocathode RF gun[J]. High Power Laser and Particle Beams, 2024, 36(10): 104003. doi: 10.11884/HPLPB202436.240162
    [3]Feng Liwen, Wang Tianyi, Jia Haoyan, Liu Zhongqi, Xu Hang, Huang Shenlin, Liu Kexin. Peking University’s DC-SRF-II photoinjector drive laser system[J]. High Power Laser and Particle Beams, 2022, 34(10): 104016. doi: 10.11884/HPLPB202234.210343
    [4]Zhu Dechong, Sui Yanfeng, Yue Junhui, Peng Yuemei, Liu Jiaming, Cao Jianshe. Design of High Energy Photon Source Booster beam size monitor[J]. High Power Laser and Particle Beams, 2021, 33(4): 044005. doi: 10.11884/HPLPB202133.200268
    [5]Luo Wen, Zhang Jianzhu, Xie Xiaogang, Zhang Feizhou. Application of laser shaping in laser illumination[J]. High Power Laser and Particle Beams, 2016, 28(07): 071005. doi: 10.11884/HPLPB201628.071005
    [6]Yang Changhong, Meng Lin, Zhang Kaizhi, Liu Dagang, Liao Shuqing, Dai Zhiyong. Development of multi-function emission module in LIAPIC3D code[J]. High Power Laser and Particle Beams, 2013, 25(11): 2976-2980. doi: 10.3788/HPLPB20132511.2976
    [7]Zhang Fang, Dong Zhiwei, Dong Ye, Sun Huifang, Yang Wenyuan. Influence of beam emittance on performance of FWG-TWT[J]. High Power Laser and Particle Beams, 2013, 25(06): 1450-1454. doi: 10.3788/HPLPB20132506.1450
    [8]Yang Guojun, Zhang Zhuo, Wei Tao, Shi Jinshui. Effect of beam emittance on chromatic blur for proton radiography[J]. High Power Laser and Particle Beams, 2013, 25(03): 778-782. doi: 10.3788/HPLPB20132503.0778
    [9]Wang Jiale, Cheng Jian, Li Nannan. Development of an emittance measurement instrument based on embedded system[J]. High Power Laser and Particle Beams, 2012, 24(07): 1584-1588.
    [10]Wang Xiaohui, He Zhigang, Fang Jia, Sun Baogen, Jia Qika, Tang Leilei, Lu Ping, Luo Qing. Slit-based emittance measurement system for high-brightness injector at Hefei Light Source[J]. High Power Laser and Particle Beams, 2012, 24(02): 457-462. doi: 10.3788/HPLPB20122402.0457
    [11]Wang Jigang, He Zhigang, Sun Baogen, Lu Ping, Gu Liming, Tang Leilei. 条纹相机系统在激光脉冲整形测量中的应用[J]. High Power Laser and Particle Beams, 2012, 24(06): 1461-1465. doi: 10.3788/HPLPB20122406.1461
    [12]he zhigang, wang jigang, jia qika. Temporal shaping of laser pulse and its improvement to beam emittance[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [13]xia liansheng, zhang huang, chen debiao, zhang kaizhi, zhang linwen, deng jianjun. Measurement of multi-pulsed electron beams emittance[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [14]zhang xue-ying, xu hu-shan, sun zhi-yu, hu zheng-guo, zhang hong-bin. Monte-Carlo simulation of lifetime of light ion beams in CSRm for internal target experiments[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [15]xu rong, zou yu-bin, gao shu-li, guo zhi-yu, peng shi-xiang, qian feng, zhao jie. Allison scanner for high-current ion beam emittance measurements[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [16]zhu feng, quan sheng-wen, jiao fei, zhao kui. Updated design of the DC-SC photo-injector at Peking University[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- .
    [17]du qiang, huang wen-hui, sun da-rui, dai jian-ping, tang chuan-xiang. Frequency stabilization of mode-locked laser for Thomson scattering X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [18]zhu ling, chen huai-bi, tong de-chun, lin yu-zheng. (1/2+1/2+1) cell structure type RF gun[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [19]yang guo-jun, liu cheng-jun, lin yu-zheng, chen si-fu, zhang zhuo. Research of optical transition radiation on intense electron-beam diagnostics[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- .
  • Cited by

    Periodical cited type(5)

    1. 石英彤,徐航,徐金强,黄森林. 高亮度电子源驱动激光研究进展. 强激光与粒子束. 2025(02): 5-25 . 本站查看
    2. 亓岩,朱英杰,张晶,王延伟,周密,孙晨曦,颜博霞,韩巍,王宇. 激光光束整形技术研究进展. 激光与光电子学进展. 2024(05): 57-68 .
    3. 高清华,李馨萌,张百超,杨栋元,余永,张未卿,贺志刚,俞盛锐,吴国荣,杨学明. 大连先进光源驱动激光纵向平顶整形及其束流动力学模拟分析. 中国激光. 2024(14): 180-189 .
    4. 姜世民,陆志军,刘星光,李晓. C波段光阴极电子枪驱动激光整形研究. 强激光与粒子束. 2024(10): 148-153 . 本站查看
    5. 舒存铭,唐泽斌,谢玉林. 高斯光束整形为平顶光束的非球面镜系统设计与优化. 黄冈师范学院学报. 2023(03): 54-57 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.7 %FULLTEXT: 24.7 %META: 68.6 %META: 68.6 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.3 %其他: 6.3 %其他: 0.3 %其他: 0.3 %China: 1.9 %China: 1.9 %India: 0.2 %India: 0.2 %United Kingdom: 0.3 %United Kingdom: 0.3 %United States: 0.7 %United States: 0.7 %[]: 0.3 %[]: 0.3 %上海: 3.3 %上海: 3.3 %东莞: 1.3 %东莞: 1.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 1.7 %兰州: 1.7 %北京: 5.4 %北京: 5.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %博阿努瓦: 0.3 %博阿努瓦: 0.3 %厦门: 0.1 %厦门: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 4.1 %合肥: 4.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.8 %大连: 0.8 %大阪府: 0.1 %大阪府: 0.1 %天津: 0.3 %天津: 0.3 %宣城: 0.2 %宣城: 0.2 %巴黎: 0.4 %巴黎: 0.4 %广州: 0.3 %广州: 0.3 %张家口: 1.0 %张家口: 1.0 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %无锡: 0.3 %无锡: 0.3 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.7 %杭州: 0.7 %柏林: 0.3 %柏林: 0.3 %武汉: 1.8 %武汉: 1.8 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.5 %济南: 0.5 %深圳: 1.1 %深圳: 1.1 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.4 %漯河: 0.4 %烟台: 0.1 %烟台: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 23.1 %芒廷维尤: 23.1 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.1 %苏州: 0.1 %西宁: 35.1 %西宁: 35.1 %西安: 0.1 %西安: 0.1 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.5 %运城: 1.5 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.9 %郑州: 0.9 %重庆: 0.2 %重庆: 0.2 %镇江: 0.1 %镇江: 0.1 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %其他其他ChinaIndiaUnited KingdomUnited States[]上海东莞中山临汾丹东丽水保定兰州北京十堰南京博阿努瓦厦门台州合肥哥伦布嘉兴大连大阪府天津宣城巴黎广州张家口成都扬州无锡昆明晋城普洱杭州柏林武汉沈阳济南深圳温州湖州漯河烟台福州秦皇岛绵阳芒廷维尤芝加哥苏州西宁西安许昌贵阳运城邯郸郑州重庆镇江长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (785) PDF downloads(77) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return