Citation: | Yang Wenyuan, Dong Ye, Sun Huifang, et al. Structure optimization and performance improvements of relativistic magnetron using all-cavity output and semi-transparent cathode[J]. High Power Laser and Particle Beams, 2021, 33: 073001. doi: 10.11884/HPLPB202133.210098 |
[1] |
Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: Wiley IEEE Press, 2001: 54-57.
|
[2] |
Daimon M, Jiang W. Modified configuration of relativistic magnetron with diffraction output for efficiency improvement[J]. Applied Physics Letters, 2007, 91: 191503. doi: 10.1063/1.2803757
|
[3] |
姜亚群, 李天明, 郝晶龙. 透明阴极实现相对论磁控管跳频的仿真[J]. 强激光与粒子束, 2016, 28:033003. (Jiang Yaqun, Li Tianming, Hao Jinglong. Simulation of frequency hopping of relativistic magnetron based on transparent cathode[J]. High Power Laser and Particle Beams, 2016, 28: 033003 doi: 10.11884/HPLPB201628.033003
|
[4] |
Fleming T, Lambrecht M, Mardahl P, et al. Design and simulation of a T-vane relativistic inverted magnetron[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1962-1967. doi: 10.1109/TPS.2018.2801249
|
[5] |
Fuks M I, Kovalev N F, Andreev A D, et al. Mode conversion in a magnetron with axial extraction of radiation[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 620-626. doi: 10.1109/TPS.2006.875770
|
[6] |
Li Wei, Liu Yonggui, Zhang Jun, et al. Experimental investigations of the TE11 mode radiation from a relativistic magnetron with diffraction output[J]. Physics of Plasmas, 2012, 19: 113108. doi: 10.1063/1.4767647
|
[7] |
史迪夫, 钱宝良, 李伟, 等. 用于磁控管轴向辐射TE11模式的紧凑型输出结构[J]. 强激光与粒子束, 2016, 28:033006. (Shi Difu, Qian Baoliang, Li Wei, et al. Compact output structure with TE11 radiated mode in magnetron with axial output[J]. High Power Laser and Particle Beams, 2016, 28: 033006 doi: 10.11884/HPLPB201628.033006
|
[8] |
Qin Fen, Xu Sha, Lei Lurong, et al. A compact relativistic magnetron with lower output mode[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1960-1964. doi: 10.1109/TED.2019.2898446
|
[9] |
He Chaoxiong, Li Tianming, Hu Biao, et al. The characteristics research on A6 relativistic magnetron with diffraction output operating in the negative first harmonic of 2π /3 mode[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 3967-3973. doi: 10.1109/TPS.2019.2927358
|
[10] |
Bosman H L, Fuks M I, Prasad S, et al. Improvement of the output characteristics of magnetrons using the transparent cathode[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 606-619. doi: 10.1109/TPS.2006.875771
|
[11] |
Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
|
[12] |
Hoff B W, Greenwood A D, Mardahl P J, et al. All cavity-magnetron axial extraction technique[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3046-3051. doi: 10.1109/TPS.2012.2217758
|
[13] |
王冬, 秦奋, 杨郁林, 等. L波段全腔提取轴向输出相对论磁控管设计[J]. 强激光与粒子束, 2016, 28:033013. (Wang Dong, Qin Fen, Yang Yulin, et al. Design of L band all cavity axial extraction relativistic magnetron[J]. High Power Laser and Particle Beams, 2016, 28: 033013 doi: 10.11884/HPLPB201628.033013
|
[14] |
Xu Sha, Lei Lurong, Qin Fen, et al. Compact, high power and high efficiency relativistic magnetron with L-band all cavity axial extraction[J]. Physics of Plasmas, 2018, 25: 083301. doi: 10.1063/1.5041860
|
[15] |
Liu Zeyang, Fan Yuwei, Wang Xiaoyu, et al. A high-efficiency relativistic magnetron with a novel all-cavity extraction structure[J]. AIP Advances, 2020, 10: 035104. doi: 10.1063/1.5102151
|
[16] |
Yang Wenyuan, Dong Zhiwei, Yang Yulin, et al. Numerical investigation of the relativistic magnetron using a novel semitransparent cathode[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3458-3464. doi: 10.1109/TPS.2014.2359434
|
[17] |
杨温渊, 董烨, 董志伟. 新型全腔输出半透明阴极相对论磁控管的理论和数值研究[J]. 物理学报, 2016, 65:248401. (Yang Wenyuan, Dong Ye, Dong Zhiwei. Theoretical and numerical investigations of the novel relativistic magnetron using all-cavity output and semi-transparent cathode[J]. Acta Physica Sinica, 2016, 65: 248401 doi: 10.7498/aps.65.248401
|
[18] |
杨温渊, 董烨, 董志伟. 全腔输出相对论磁控管输出模式转换结构的理论设计和数值模拟[J]. 物理学报, 2018, 67:188401. (Yang Wenyuan, Dong Ye, Dong Zhiwei. Design and simulation of output mode conversion structure of relativistic magnetron with all cavity output[J]. Acta Physica Sinica, 2018, 67: 188401 doi: 10.7498/aps.67.20180358
|
[1] | Yang Wenyu, Chai Xiang, Zhu Enping, Liu Xiaojing. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36(3): 036001. doi: 10.11884/HPLPB202436.230388 |
[2] | Fu Pengtao, Zhang Anlong, Gu Peiyong. Research on diagnosis of fuel defects in operating pressurized water reactors[J]. High Power Laser and Particle Beams, 2024, 36(3): 036002. doi: 10.11884/HPLPB202436.230387 |
[3] | Fang Wentao, Tong Lili, Cao Xuewu. Influence of wire wrap mixing model on sub-channel analysis of sodium-cooled fast reactor assembly[J]. High Power Laser and Particle Beams, 2023, 35(9): 096001. doi: 10.11884/HPLPB202335.230051 |
[4] | Wang Huacai, Cheng Huanlin, Song Wulin, Guo Lina, Tang Qi, Yang Qifa. Raman characteristic analysis of oxidation of fuel pellets for intact and leaked pressurized water reactors fuel rods with different burnup[J]. High Power Laser and Particle Beams, 2023, 35(11): 116003. doi: 10.11884/HPLPB202335.230047 |
[5] | Chen Xirong, Xie Jinsen, Yu Tao, Ni Zining, Deng Nianbiao, Shao Zeng, Xie Haoran. Analysis of different burnup calculation models on nuclide components of spent fuel assembly in commercial pressurized water reactor[J]. High Power Laser and Particle Beams, 2023, 35(5): 056002. doi: 10.11884/HPLPB202335.230010 |
[6] | Qin Kaiwen, Yang Bo, Wang Ziming, Qian Yunchen, Liu Haojie, Liu Yibao. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34(12): 126001. doi: 10.11884/HPLPB202234.220156 |
[7] | Liu Xiao, Yang Wankui, Wang Hao, Wang Jian, Zhang Songbao, Zhang Xinrong, Li Wenhua. Size measurements of beryllium assemblies after long term service[J]. High Power Laser and Particle Beams, 2022, 34(5): 056009. doi: 10.11884/HPLPB202234.210516 |
[8] | Ding Wenjie, Wang Shaohua, Gao Jiao, Guo Haibing, Ma Jimin, Liu Zhiyong. Safety boundary of flow channel partial blockage in plate-type fuel assembly[J]. High Power Laser and Particle Beams, 2022, 34(5): 056003. doi: 10.11884/HPLPB202234.210508 |
[9] | Li Jinggang, Wang Chao, Chen Jun, Peng Jinghan. Development and verification of fuel assembly bowing model in software package PCM[J]. High Power Laser and Particle Beams, 2022, 34(2): 026004. doi: 10.11884/HPLPB202234.210378 |
[10] | Chen Siyan, Pan Hui, Chen Jun, Zhao Changyou, Zheng Junxiao, Wang Chao, Lu Haoliang, Han Song. Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant[J]. High Power Laser and Particle Beams, 2022, 34(2): 026014. doi: 10.11884/HPLPB202234.210312 |
[11] | Li Yun, Li Hua, Zhang Lin, Pu Zengping, Jiao Yongjun, Zhang Kun, Huang Chunlan. Major in-pile performance of CF2 fuel assembly[J]. High Power Laser and Particle Beams, 2020, 32(10): 106002. doi: 10.11884/HPLPB202032.200159 |
[12] | Fang Haitao, Zhao Yongsong, Zhang Xilin, Zhou Xingbin, Li Wei, Chen Hongli. In-core fuel management strategy design of lead-cooled fast reactor M2LFR-1000[J]. High Power Laser and Particle Beams, 2018, 30(9): 096003. doi: 10.11884/HPLPB201830.180083 |
[13] | Du Xianan, Cao Liangzhi, Zheng Youqi. Method of generating homogenized fast reactor assembly constants based on point-wise cross section[J]. High Power Laser and Particle Beams, 2017, 29(01): 016001. doi: 10.11884/HPLPB201729.160176 |
[14] | Lu Di, Xia Bangyang, Ning Zhonghao, Huang Shi’en, Zhong Minxiao, Liao Hongkuan, Wang Shiqian. Design of mixed moderators’ fuel assembly in SCWR[J]. High Power Laser and Particle Beams, 2017, 29(05): 056004. doi: 10.11884/HPLPB201729.160205 |
[15] | Yang Ping, Ming Zhedong, Xu Yu, Wang Lianjie, Xia Bangyang. Design consideration and performance analysis of supercritial water reactor fuel assembly[J]. High Power Laser and Particle Beams, 2017, 29(01): 016023. doi: 10.11884/HPLPB201729.160411 |
[16] | Wang Mengqi, Ding Qianxue, Mei Qiliang. Neutron flux calculation of reactor pressure vessel for MOX fuel core[J]. High Power Laser and Particle Beams, 2017, 29(03): 036008. doi: 10.11884/HPLPB201729.160179 |
[17] | Wei Jinfeng, Xu Xingxing, Fu Xuefeng, Cai Dechang. Feasibility study of 24-month fuel cycle for a 177-assembly core[J]. High Power Laser and Particle Beams, 2017, 29(01): 016020. doi: 10.11884/HPLPB201729.160336 |
[18] | Lv Yang, Zeng Xian, Huang Hongwen. Nuclear fuel cycle scenarios on fusion-fission hybrid reactor symbiotic systems[J]. High Power Laser and Particle Beams, 2015, 27(01): 016003. doi: 10.11884/HPLPB201527.016003 |
[19] | Li Wenqian, Li Hong, Xie Feng, Cao Jianzhu, Fang Sheng. Neutron shielding effects of spent fuel tank of high temperature reactor[J]. High Power Laser and Particle Beams, 2013, 25(01): 227-232. doi: 10.3788/HPLPB20132501.0227 |
[20] | Cao Pan, Yu Hong, Hu Yun, Chen Yiyu, Xu Li. Calculation of pin power distributions in fuel subassembly of China Experimental Fast Reactor[J]. High Power Laser and Particle Beams, 2013, 25(05): 1275-1278. doi: 10.3788/HPLPB20132505.1275 |