Citation: | Han Ruoyu, Deng Chengzhi, Feng Juan, et al. Discharge characteristics and spatial-temporal evolution of Cu-Ni alloy wire explosion[J]. High Power Laser and Particle Beams, 2021, 33: 065010. doi: 10.11884/HPLPB202133.210103 |
[1] |
Chace W G, Moore H K. Exploding wires[M]. New York: Plenum Press, 1959.
|
[2] |
张永民, 姚伟博, 邱爱慈, 等. 金属丝电爆炸现象研究综述[J]. 高电压技术, 2019, 45(8):2668-2680. (Zhang Yongmin, Yao Weibo, Qiu Aici, et al. Review of wire electrical explosion phenomena[J]. High Voltage Engineering, 2019, 45(8): 2668-2680
|
[3] |
邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016.
Qiu Aici. Pulsed power technology applications[M]. Xi’an: Shaanxi Science and Technology Press, 2016).
|
[4] |
高翔, 万元熙, 丁宁, 等. 可控核聚变科学技术前沿问题和进展[J]. 中国工程科学, 2018, 20(3):25-31. (Gao Xiang, Wan Yuanxi, Ding Ning, et al. Frontier issues and progress of controlled nuclear fusion science and technology[J]. Strategic Study of CAE, 2018, 20(3): 25-31
|
[5] |
王莹, 孙元章, 阮江军, 等. 脉冲功率科学与技术[M]. 汕头: 汕头大学出版社, 2010.
Wang Ying, Sun Yuanzhang, Run Jiangjun, et al. Science and technology on pulsed power[M]. Shantou: Shantou University Press, 2010).
|
[6] |
王俞卫, 陈冬群, 张自成, 等. 基于爆磁压缩发生器的紧凑脉冲功率源(英文)[J]. 强激光与粒子束, 2019, 31:025002. (Wang Yuwei, Chen Dongqun, Zhang Zicheng, et al. Compact pulsed power source based on explosively driven magnetic flux compression generator[J]. High Power Laser and Particle Beams, 2019, 31: 025002 doi: 10.11884/HPLPB201931.180242
|
[7] |
王坤, 姜林村, 史宗谦, 等. 纳秒级铝单丝电爆炸过程中金属态-非金属态转变研究[J]. 中国电机工程学报, 2021, 41(8):2957-2964. (Wang Kun, Jiang Lincun, Shi Zongqian, et al. Metal-nonmetal transition in nanosecond electrical explosion of aluminum wires[J]. Proceedings of the CSEE, 2021, 41(8): 2957-2964
|
[8] |
Pikuz S A, Sinars D B, Shelkovenko T A, et al. High energy density z-pinch plasma conditions with picosecond time resolution[J]. Physical Review Letters, 2002, 89: 035003. doi: 10.1103/PhysRevLett.89.035003
|
[9] |
Ouyang Peixuan, Li Peijie, Leksina E G, et al. Effect of liquid properties on laser ablation of aluminum and titanium alloys[J]. Applied Surface Science, 2016, 360: 880-888. doi: 10.1016/j.apsusc.2015.11.080
|
[10] |
Liao Qilong, Tannenbaum R, Wang Zhonglin. Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction[J]. The Journal of Physical Chemistry B, 2006, 110(29): 14262-14265. doi: 10.1021/jp0625154
|
[11] |
Chace W G. Liquid behavior of exploding wires[J]. The Physics of Fluids, 1959, 2(2): 230-235. doi: 10.1063/1.1705912
|
[12] |
Han Ruoyu, Wu Jiawei, Qiu Aici, et al. A platform for exploding wires in different media[J]. Review of Scientific Instruments, 2017, 88: 103504. doi: 10.1063/1.4996027
|
[13] |
Tucker T J, Toth R P. EBW1: a computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. Albuquerque: USDOE, 1975.
|
[14] |
Burtsev V A, Kalinin N V, Luchinski A V. Electrical explosion of conductors and its application in electro-physical installations[M]. Moscow: Energoatomizdat, 1990.
|
[15] |
Tkachenko S I, Pikuz S A, Romanova V M, et al. Overvoltage pulse development upon electrical explosion of thin wires[J]. Journal of Physics D: Applied Physics, 2007, 40(6): 1742-1750. doi: 10.1088/0022-3727/40/6/022
|
[16] |
Bigelmayr M, Pieterse P, Uhrlandt D. Energy dissipation and efficiency of exploding stainless steel wires of various lengths and diameters[J]. Journal of Physics D: Applied Physics, 2020, 54: 045202.
|
[17] |
Zhao Junping, Xu Zhuo, Yan Wenyu, et al. Characteristics and diffusion of electrical explosion plasma of aluminum wire in argon gas[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 185-192. doi: 10.1109/TPS.2017.2651032
|
[18] |
Han Ruoyu, Zhu Wanying, Wu Jiawei, et al. Spatial–temporal evolution of plasma radiation in electrical wire explosion: a morphological observation[J]. Journal of Physics D: Applied Physics, 2020, 53: 345201. doi: 10.1088/1361-6463/ab8b07
|