Zhang Manzhou, Wang Kun, Zhang Qinglei, et al. Compensations of double elliptical polarization undulator effects on the SSRF storage ring[J]. High Power Laser and Particle Beams, 2017, 29: 075103. doi: 10.11884/HPLPB201729.170014
Citation: Lan Ziyue, Pan Kaiqiang, Yang Dong, et al. Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe[J]. High Power Laser and Particle Beams, 2021, 33: 112001. doi: 10.11884/HPLPB202133.210104

Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe

doi: 10.11884/HPLPB202133.210104
  • Received Date: 2021-03-23
  • Rev Recd Date: 2021-11-05
  • Available Online: 2021-11-11
  • Publish Date: 2021-11-15
  • This paper uses the two-dimensional particle-in-cell simulation program EPOCH to verify the feasibility of the relativistic electron beam probe in diagnosing the electrostatic wave generated by stimulated Raman scattering. The results show that the electron beam probe will produce density modulation in the transverse direction of the electron beam probe after passing through the electrostatic wave’s electric field. The density modulation is periodically distributed and moves along the propagation direction of the electrostatic wave. The wavenumber of the density modulation corresponds to the wavenumber of the electrostatic wave. And the moving speed corresponds to the phase speed of the electrostatic wave, so it can be used to deduce the temperature and density of electrons under certain conditions. In the process of diagnosing electrostatic waves, the beam length of the electron beam probe must be shorter than the wavelength of the electrostatic wave or the exposure time of the diagnostic equipment must be less than the period of the electrostatic wave. The research in this paper provides a new method of directly diagnosing the temperature and density of electrostatic waves and electrons, which is of great significance for promoting the experimental research of stimulated Raman scattering and other laser plasma instabilities.
  • [1]
    张钧, 常铁强. 激光核聚变靶物理基础[M]. 北京: 国防工业出版社, 2004: 40-41

    Zhang Jun, Chang Tieqiang. Fundaments of the target physics for laser fusion[M]. Beijing: National Defense Industry Press, 2004: 40-41
    [2]
    Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
    [3]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [4]
    Hinkel D E, Callahan D A, Meezan N B, et al. Analyses of laser-plasma interactions in NIF ignition emulator designs[J]. Journal of Physics:Conference Series, 2010, 244: 022019. doi: 10.1088/1742-6596/244/2/022019
    [5]
    Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [6]
    Baldis H S, Campbell E M, Kruer W L. Physics of laser plasmas[M]. New York: North-Holland, 1991.
    [7]
    王传珂, 蒋小华, 王哲斌, 等. 神光II激光装置的全口径背向散射测量系统[J]. 强激光与粒子束, 2010, 22(8):1896-1900. (Wang Chuanke, Jiang Xiaohua, Wang Zhebin, et al. Full-aperture backscatter station on Shenguang-II Laser Facility[J]. High Power Laser and Particle Beams, 2010, 22(8): 1896-1900 doi: 10.3788/HPLPB20102208.1896
    [8]
    MacGowan B J, Afeyan B B, Back C A, et al. Laser-plasma interactions in ignition-scale hohlraum plasmas[J]. Physics of Plasmas, 1996, 3(5): 2029-2040. doi: 10.1063/1.872000
    [9]
    王传珂, 蒋小华, 刘慎业, 等. 2ns, 351 nm激光黑腔靶受激Raman散射实验研究[J]. 强激光与粒子束, 2006, 18(7):1113-1116. (Wang Chuanke, Jiang Xiaohua, Liu Shenye, et al. Stimulated Raman scattering from interaction of 2 ns, 351 nm laser with hohlraum[J]. High Power Laser and Particle Beams, 2006, 18(7): 1113-1116
    [10]
    郝亮, 刘占军, 胡晓燕, 等. 黑腔等离子体中SRS与SBS过程的散射光谱分析[J]. 强激光与粒子束, 2015, 27:032004. (Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004 doi: 10.11884/HPLPB201527.032004
    [11]
    Glenzer S H, Back C A, Estabrook K G, et al. Observation of two ion-acoustic waves in a two-species laser-produced plasma with Thomson scattering[J]. Physical Review Letters, 1996, 77(8): 1496-1499. doi: 10.1103/PhysRevLett.77.1496
    [12]
    Glenzer S H, Back C A, Suter L J, et al. Thomson scattering from inertial-confinement-fusion hohlraum plasmas[J]. Physical Review Letters, 1997, 79(7): 1277-1280. doi: 10.1103/PhysRevLett.79.1277
    [13]
    Glenzer S H, Roznus W, MacGowan B J, et al. Thomson scattering from high-Z laser-produced plasmas[J]. Physical Review Letters, 1999, 82(1): 97-100. doi: 10.1103/PhysRevLett.82.97
    [14]
    李志超, 赵航, 龚韬, 等. 激光惯性约束聚变中光学汤姆逊散射研究进展[J]. 强激光与粒子束, 2020, 32:092004. (Li Zhichao, Zhao Hang, Gong Tao, et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 092004
    [15]
    Kline J L, Montgomery D S, Bezzerides B, et al. Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter[J]. Physical Review Letters, 2005, 94: 175003. doi: 10.1103/PhysRevLett.94.175003
    [16]
    Rousseaux C, Gremillet L, Casanova M, et al. Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic[J]. Physical Review Letters, 2006, 97: 015001. doi: 10.1103/PhysRevLett.97.015001
    [17]
    Zhang C J, Hua J F, Xu X L, et al. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe[J]. Scientific Reports, 2016, 6: 29485. doi: 10.1038/srep29485
    [18]
    Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 2008, 100: 225001. doi: 10.1103/PhysRevLett.100.225001
    [19]
    张超杰. 基于超快电子探针的等离子体尾波场成像研究[D]. 北京: 清华大学工程物理系, 2016

    Zhang Chaojie. Probing wakefield structures in plasma based accelerators using femtosecond relativistic electron probes[D]. Beijing: Department of Engineering Physics in Tsinghua University, 2016
    [20]
    Ward R, Sircombe N J. Fast particle Bremsstrahlung effects in the PIC code EPOCH: enhanced diagnostics for laser-solid interaction modelling[R]. University of Warwick, 2014.
  • Relative Articles

    [1]Li Bo, Li Yanmin, Zhao Juan, Li Hongtao, Ma Liehua, Ai Jie, Wang Cheng, Zhang Botao, Peng Xusheng, Li Tao. Design of the hardware automatic detection and control circuit for scintillation detectors[J]. High Power Laser and Particle Beams, 2025, 37(3): 015011. doi: 10.11884/HPLPB202537.240302
    [2]Zheng Xinzhi, Dou Shiji, Liu Xiang, Zhao Chenxi, Zhao Shilong, Yang Yue, Wang Shaoyi, Zhao Zongqing, Ma Yujie. Simulation of light field regulation based on micro-nano structure and material properties[J]. High Power Laser and Particle Beams, 2024, 36(3): 031002. doi: 10.11884/HPLPB202436.230453
    [3]Zhang Shulin, Zhu Guoli, Dong Guangyan. All-fiber mode-locked laser using platinum film-coated microfiber[J]. High Power Laser and Particle Beams, 2023, 35(3): 031002. doi: 10.11884/HPLPB202335.220263
    [4]Chen Yu, Guo Jielin, Zhong Hui, Sun Guanshu, Chen Zhiqiang, Jia Wei. Detection and location method of nanosecond pulse discharge ultraviolet fiber array[J]. High Power Laser and Particle Beams, 2021, 33(11): 115001. doi: 10.11884/HPLPB202133.210226
    [5]Hu Yun, Zhang Jiyan, Jiang Shaoen, Wang Zhebin, Pu Yudong. Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility[J]. High Power Laser and Particle Beams, 2020, 32(5): 052002. doi: 10.11884/HPLPB202032.200022
    [6]Wu Ya'nan, Mao Huafeng, Shen Xianshun, Li Jun, Lu Jing, Mao Zhiwei. Assessment method of thyristor controlled reactor dynamic response time based on trigger detection[J]. High Power Laser and Particle Beams, 2019, 31(5): 056001. doi: 10.11884/HPLPB201931.180362
    [7]Mo Jun, Feng Guoying, Liao Yu, Yang Mochou, Zhou Shouhuan. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30(8): 081003. doi: 10.11884/HPLPB201830.180079
    [8]Fang Yu, Li Zefu, Luo Xuan, Chen Shufan, Huang Chuanqun, Zhang Qingjun. Microstructure controlling of low density PMP foam films[J]. High Power Laser and Particle Beams, 2014, 26(02): 022020. doi: 10.3788/HPLPB201426.022020
    [9]Liu Yong, Cheng Xiaofeng, Xu Jianqiu, Mu Quanquan, Wang Haiping. Effective cleanliness in large laser contaminants control[J]. High Power Laser and Particle Beams, 2014, 26(11): 111010. doi: 10.11884/HPLPB201426.111010
    [10]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, Wei Zhengtong, Zhou Guorui. Contamination particles sensor based on microfiber[J]. High Power Laser and Particle Beams, 2014, 26(11): 114103. doi: 10.11884/HPLPB201426.114103
    [11]Cheng Xiaofeng, Wang Hongbin, Miao Xinxiang, Qin Lang, Ye Yayun, Chen Yuanbin, Lv Haibing, Xiong Qian, He Qun, Ma Zhiqiang, Zhao Longbiao, Liu Yong, He Shaobo, Yuan Xiaodong, Zhu Qihua, Jing Feng, Zheng Wanguo. Contamination control for high-power solid-state laser driver and improvement of cleanliness in slab amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(05): 1147-1151. doi: 10.3788/HPLPB20132505.1147
    [12]Li Feifei, Wu Jin, Zhao ZhiLong, Wang DongLei, Ye Zhengyu, Yu Yanming. Air coupled vibration detection of all-fiber laser Doppler vibrometer[J]. High Power Laser and Particle Beams, 2012, 24(11): 2549-2554. doi: 10.3788/HPLPB20122411.2549
    [13]Li Jianyi, Xiao Wen, Pan Feng, Cong Lin, Wang Fanjing. Real-time micro-vibration testing based on digital holographic interferometry[J]. High Power Laser and Particle Beams, 2012, 24(10): 2291-2295. doi: 10.3788/HPLPB20122410.2291
    [14]zhang li, liu guodong, wang guibing. Influence of optical window shape on aero-optic effects[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [15]zhang jun-wei, zhou hai, zhou yi, feng bin, wang shi-long, lin dong-hui, jing feng. Structure stability index allocation theory and measurement of laser prototype facility[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [16]chen zhe-min, chen jun, sheng fang, chen guang-miao. 1 Hz~25 kHz repetition rate controllable microchip laser[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [17]mu zhi-dong, wei qi-ying, ye shi-wang, zhang lei, wei wei, wang shu-kai. Extended analysis of fine-structure energy levels of 4s24p3 and 4s4p4 for ions from PdXIV to Cd XVI[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]wang xiao-dong, jiang ren-bin, zhang jun-, wang wan-jue, jiang xiao-feng, shen yi-fan. Fine-structure energy levels and radiation lifetime in Mglike ions Mn XIV and Zn XIX[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
    [19]li guang-wu, ma hong-liang, li mao-sheng, zhang xue-mei, lu fu-quan, peng xian-jue, yang fu-jia. Hyperfine structure spectrum measurement for 159TbII[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 彭政伟,张胜海,苗劲松,陈文博,于洋,卫正统. 微纳光纤直径测试技术研究. 激光技术. 2021(05): 596-600 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.3 %FULLTEXT: 20.3 %META: 78.7 %META: 78.7 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.2 %[]: 0.2 %上海: 1.6 %上海: 1.6 %上饶: 0.1 %上饶: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 22.3 %北京: 22.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.5 %南京: 0.5 %厦门: 0.1 %厦门: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.1 %天津: 0.1 %威海: 0.1 %威海: 0.1 %宣城: 0.1 %宣城: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.4 %张家口: 0.4 %扬州: 0.2 %扬州: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.4 %杭州: 1.4 %武汉: 0.2 %武汉: 0.2 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.4 %芝加哥: 0.4 %衢州: 0.2 %衢州: 0.2 %西宁: 44.9 %西宁: 44.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %通辽: 0.1 %通辽: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阿什本: 0.3 %阿什本: 0.3 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海上饶中山临汾丹东伊利诺伊州兰州北京十堰南京厦门台州合肥吉隆坡呼和浩特哥伦布唐山嘉兴天津威海宣城布鲁塞尔常州广州张家口扬州晋城普洱杭州武汉法尔肯施泰因洛阳深圳温州湖州漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城通辽邯郸郑州长沙长治阿什本香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (820) PDF downloads(49) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return