Yang Shi, Ren Shuqing, Lai Dingguo, et al. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27: 095006. doi: 10.11884/HPLPB201527.095006
Citation: Zhang Hui, Mu Zhencheng, Rong Linyan, et al. Design and test of device for transition from ridge waveguide to coaxial line[J]. High Power Laser and Particle Beams, 2021, 33: 103003. doi: 10.11884/HPLPB202133.210105

Design and test of device for transition from ridge waveguide to coaxial line

doi: 10.11884/HPLPB202133.210105
  • Received Date: 2021-03-22
  • Rev Recd Date: 2021-03-26
  • Available Online: 2021-09-14
  • Publish Date: 2021-10-15
  • Waveguide to coaxial line transtion is often used in RF measurement systems. To measure the network parameters of these RF devices with a vector network analyzer and other instruments, the transtion is indispensable to convert the waveguide ports of the RF devices to 50 Ω coaxial line which can directly access the network analyzer. The 648 MHz/WR1500 transformer designed in this paper is mainly used for the measurement of the superconducting linac RF devices at the China Spallation Neutron Source (CSNS) upgrading phase (CSNS-II). In this paper Chebyshev ridge ladder impedance transformation and probe coupling are adopted to complete waveguide to coaxial line transition. The ridge loaded waveguide and discontinuous coaxial line are analyzed respectively, and the optimal size is obtained. The designed transformer has the characteristics of low insertion loss, low VSWR and wide bandwidth to achieve high measurement accuracy. At last, the transition device is tested, and the test results are close to the simulation results, which can meet the requirements of being a measuring device.
  • [1]
    张健穹, 刘庆想, 李相强, 等. 三角形栅格矩形径向线螺旋阵列天线的设计与实验研究[J]. 强激光与粒子束, 2009, 21(4):550-554. (Zhang Jianqiong, Liu Qingxiang, Li Xiangqiang, et al. Design and experimental research on triangle-grid radial-line helical rectangular array antenna[J]. High Power Laser and Particle Beams, 2009, 21(4): 550-554
    [2]
    王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009.

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009
    [3]
    Eric H. Essentials of RF and microwave grounding[M]. Boston: Artech House, 2006.
    [4]
    Gupta K C. Microstrip lines and slotlines [M]. 2nd ed. Norwood MA: Artech House, 2006.
    [5]
    Yao Huiwen, Amr A, Ji F L, et al. A full wave analysis of microstrip to waveguide transitions[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(12): 213-216.
    [6]
    张克潜, 李德杰. 微波与光电子学中的电磁理论[M]北京: 电子工业出版社. 2001.

    Zhang Keqian, Li Dejie. Electromagnetic theory in microwave and optoelectronics[M]. Beijing: Publishing House of Electronics Industry, 2001
    [7]
    Malik Z Y, Abdul M, Muhammad I N, et al. Narrow band ridge waveguide-to-microstrip transition for low noise amplifier at Ku-band[C]//Proceedings of International Bhurban Conference on Applied Sciences & Technology Islamabad. 2009: 140-143
    [8]
    Yang Rugui. Electromagnetic field and electromagnetic wave[M]. Beijing: Higher Education Press, 2005.
    [9]
    David M P. 微波工程[M]. 北京: 电子工业出版社, 2017.

    David M P. Microwave engineering[M]. Beijing: Publishing House of Electronics Industry, 2017
    [10]
    Skolnik M I. Radar handbook[M]. New York: McGraw Hill, 1990.
    [11]
    同轴线中被补偿不连续性的反射系数曲线系以及最佳尺寸的确定[J]. 无线电工程译文, 1971(2): 85-98.

    Determination of reflection coefficient curve system and optimal size of compensated discontinuity in coaxial line[J]. Radio Engineering, 1971(2): 85-98
    [12]
    Whinnery J R, Jamieson H W. Equivalent circuits for discontinuities in transmission lines[C]//Proceedings of the I. R. E. 1944: 98-114
    [13]
    柯林 R. E. 微波工程基础[M]. 北京: 人民邮电出版社, 1981.

    Colin R E. Fundamentals of microwave engineering[M]. Beijing: People’s Posts and Telecommunications Publishing House, 1981
  • Relative Articles

    [1]Zhou Tao, Hu Ning, Gai Longjie, Huang Wentao, Xu Yanlin, Liu Peiguo. Design of an S-band ultra-wideband energy selective surface[J]. High Power Laser and Particle Beams, 2024, 36(3): 033003. doi: 10.11884/HPLPB202436.230369
    [2]Zhang Wei, Xu Sha, Qin Fen, Lei Lurong, Wang Dong, Zhang Yong, Ju Bingquan, Cui Yue. Design of a compact S-band relativistic magnetron operating at low magnetic field[J]. High Power Laser and Particle Beams, 2023, 35(9): 093001. doi: 10.11884/HPLPB202335.230058
    [3]Gao Bin, Pei Shilun, Wang Hui, Zhao Shiqi, Chi Yunlong. Development of S-band hybrid bunching-accelerating structure prototype[J]. High Power Laser and Particle Beams, 2021, 33(2): 024002. doi: 10.11884/HPLPB202133.200162
    [4]Li Ye, Li Dongfeng, Wang Ziwei, Yan Song. Development of S-band ultra wideband high average power multi-beam klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103005. doi: 10.11884/HPLPB202032.200202
    [5]Yuan Huan, Huang Hua, He Hu, Ge Yi, Meng Fanbao, Chen Changhua. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29(11): 113001. doi: 10.11884/HPLPB201729.170133
    [6]Ye Hu, Cui Xinhong, Xiong Zhengfeng. Compact V-band overmoded mode-selective coupler with diamond apertures[J]. High Power Laser and Particle Beams, 2016, 28(09): 093006. doi: 10.11884/HPLPB201628.150842
    [7]Lei Lurong, Yuan Huan, Liu Zhenbang, Huang Hua, He Hu, Huang Jijin. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023003. doi: 10.11884/HPLPB201628.023003
    [8]Zhang Xin’ge, Li Shaofu, Li Bo, Deng Yuan, Li Ya’nan, Wang Lanlan. Circular waveguide TM01-TE11 mode converter[J]. High Power Laser and Particle Beams, 2014, 26(08): 083003. doi: 10.11884/HPLPB201426.083003
    [9]Chen Zhaofu, Chang Anbi, Huang Hua, Liu Zhenbang, He Hu. Numerical simulations of S-band multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2012, 24(03): 743-746. doi: 10.3788/HPLPB20122403.0743
    [10]shen baoli, zhang zhaochuan, huang yunping. Development of output section for S-band broadband high-average-power klystron[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]bai xianchen, yang jianhua, zhang jiande, zhang zehai. Influence of electron beam collector on output cavity efficiency of wide-gap klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [12]bai xianchen, zhang jiande, yang jianhua. 3-D simulation of S-band wide-gap klystron amplifier output cavity[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [13]cao nai-sheng, luo yong, wang jian-xun. Design of aperture-coupling directional coupler[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [14]gan yan-qing, huang hua, lei lu-rong, zhang yong-hui, jin xiao, ju bing-quan, xiang fei, xu zhou. Experimental investigation on an S-band relativistic klystron oscillator[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [15]lei lu-rong, fan zhi-kai, huang hua, ding en-yan, zhang xing-kai, chen zhi-gang, feng di-chao, yu ai-ming, liu tian-wen, yang zhou-bing, an hai-shi. Design and investigation of S-band klystron double-gap output cavity[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [16]lei lu-rong, fan zhi-kai, huang hua, he hu. Particle simulation of relativistic klystron amplifier double-gap output cavity[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]huang hua, fan zhi-kai, meng fan-ba, tan jie, luo guang-yao, cao shao-yun, lei lu-rong, wu yong, li zheng-hong, zhou hai-jing, zhang bei-zhen, li chun-xia. Investigation on S-band long pulse relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [18]ge cheng-liang, liang zheng, yang zi-qiang. Particle simulation on S-band relativistic two-stream amplifier[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
  • Cited by

    Periodical cited type(7)

    1. 甘延青,罗光耀,李飞,张北镇,李春霞,王淦平,金晓,宋法伦. 大功率重复频率高电压脉冲充电电源研制. 强激光与粒子束. 2025(03): 22-29 . 本站查看
    2. 江进波,徐林,罗正,杨文,唐铭,姚延东,陈锐. 基于LC串联谐振的高压恒流充电电源设计. 强激光与粒子束. 2024(05): 46-53 . 本站查看
    3. 冯传均,伍友成,何泱,戴文峰,付佳斌,刘宏伟. 正负双极性重复频率充电电源研制. 强激光与粒子束. 2023(03): 121-127 . 本站查看
    4. 冯传均,何泱,戴文峰,伍友成,付佳斌,王敏华. 串联谐振高压电容充电电源设计及分析. 强激光与粒子束. 2019(05): 55-60 . 本站查看
    5. 蔡政平,李伟松. 太赫兹器件测试用高重复频率高压脉冲电源. 强激光与粒子束. 2018(02): 62-67 . 本站查看
    6. 张彬,杨欣欣,周赛,蔡晨,赵辉,韩吉庆,潘忠泉. 波长校准用低压石英汞灯驱动电源的研制. 化学分析计量. 2017(02): 106-109 .
    7. 缪亚运,谷鸣,陈志豪,童金. 质子治疗装置脉冲电源研制. 核技术. 2016(04): 32-36 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.0 %FULLTEXT: 22.0 %META: 75.7 %META: 75.7 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.2 %其他: 3.2 %China: 0.6 %China: 0.6 %Colonia Madero (Madero): 0.3 %Colonia Madero (Madero): 0.3 %India: 0.1 %India: 0.1 %United States: 0.7 %United States: 0.7 %[]: 0.1 %[]: 0.1 %上海: 3.2 %上海: 3.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 18.6 %北京: 18.6 %南京: 0.2 %南京: 0.2 %台州: 2.2 %台州: 2.2 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.1 %咸阳: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.2 %广州: 0.2 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 0.2 %张家口: 0.2 %悉尼: 0.3 %悉尼: 0.3 %成都: 2.6 %成都: 2.6 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.1 %扬州: 0.1 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 2.4 %杭州: 2.4 %武汉: 0.2 %武汉: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.2 %淄博: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 18.1 %芒廷维尤: 18.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %莆田: 0.1 %莆田: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 40.7 %西宁: 40.7 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %龙岩: 0.1 %龙岩: 0.1 %其他ChinaColonia Madero (Madero)IndiaUnited States[]上海中山临汾丹东北京南京台州合肥咸阳嘉兴宣城广州弗吉尼亚州张家口悉尼成都成都市双流区扬州昆明普洱杭州武汉海口淄博深圳温州湖州漯河石家庄秦皇岛芒廷维尤芝加哥苏州莆田衡阳衢州襄阳西宁西安贵阳运城邯郸郑州重庆长春长治阳泉龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1464) PDF downloads(87) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return