Volume 33 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Peng Chengkai, Yan Jiyuan, Kang Yuchan, et al. Effect of plasma surface gradient silicon deposition on the electrical properties of epoxy resin[J]. High Power Laser and Particle Beams, 2021, 33: 065018. doi: 10.11884/HPLPB202133.210106
Citation: Peng Chengkai, Yan Jiyuan, Kang Yuchan, et al. Effect of plasma surface gradient silicon deposition on the electrical properties of epoxy resin[J]. High Power Laser and Particle Beams, 2021, 33: 065018. doi: 10.11884/HPLPB202133.210106

Effect of plasma surface gradient silicon deposition on the electrical properties of epoxy resin

doi: 10.11884/HPLPB202133.210106
  • Received Date: 2021-03-23
  • Rev Recd Date: 2021-05-01
  • Available Online: 2021-06-01
  • Publish Date: 2021-06-15
  • As a common insulating material, epoxy resin under high-voltage direct current electric field is prone to accumulate charges on its surface, causing electric field distortion, resulting in a decrease in the insulation performance of the material and affecting the reliability of the power system. To improve the charge characteristics and insulation properties of the gas-solid interface, based on the atmospheric pressure plasma jet technology, plasma gradient silicon deposition were conducted on the epoxy resin surface. The surface physical and chemical properties, surface conductivity, surface charge dissipation and creeping pressure characteristics of epoxy resin before and after modification were measured by multiple parameters. The experimental results show that the gradient modification has a significant effect on the physical morphology and chemical composition of the material surface. The conductivity of different regions has achieved a gradient distribution, which speeds up the dissipation of surface charges and reduces the surface trap energy level; The flashover voltage of the subsequent samples can increase by 30.16% along the surface. In summary, the plasma surface gradient silicon deposition treatment can improve the electrical properties of the epoxy resin surface, and has broad application prospects in the insulation design of high-voltage DC equipment.
  • loading
  • [1]
    Li Chuanyang, He Jinliang, Hu Jun. Surface morphology and electrical characteristics of direct fluorinated epoxy-resin/alumina composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3071-3077. doi: 10.1109/TDEI.2016.7736871
    [2]
    Li Chuanyang, Hu Jun, Lin Chuanjie, et al. Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators[J]. Journal of Physics D: Applied Physics, 2017, 50: 065301. doi: 10.1088/1361-6463/aa5207
    [3]
    周中升, 邵涛, 章程, 等. 变压器油中绝缘介质沿面闪络的研究进展[J]. 绝缘材料, 2014, 47(4):1-5, 11. (Zhou Zhongsheng, Shao Tao, Zhang Cheng, et al. Research progress in surface flashover of insulation dielectric in transformer oil[J]. Insulating Materials, 2014, 47(4): 1-5, 11 doi: 10.3969/j.issn.1009-9239.2014.04.001
    [4]
    王瑞雪, 海彬, 田思理, 等. 绝缘材料表面电荷测量优化及等离子体处理对其表面电特性的影响[J]. 高电压技术, 2017, 43(6):1808-1815. (Wang Ruixue, Hai Bin, Tian Sili, et al. Optimization of dielectric material surface charge measurement and impact of plasma treatment on their surface electrical characteristics[J]. High Voltage Engineering, 2017, 43(6): 1808-1815
    [5]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [6]
    ShaoTao, Wang Ruixue, Zhang Cheng, et al. Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20. doi: 10.1049/hve.2016.0014
    [7]
    邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [8]
    章程, 顾建伟, 邵涛, 等. 大气压空气中重复频率纳秒脉冲气体放电模式研究[J]. 强激光与粒子束, 2014, 26:045029. (Zhang Cheng, Gu Jianwei, Shao Tao, et al. Discharge mode in the repetitive nanosecond-pulse discharge in atmospheric pressure air[J]. High Power Laser and Particle Beams, 2014, 26: 045029 doi: 10.11884/HPLPB201426.045029
    [9]
    沈苑, 王瑞雪, 章程, 等. 微秒脉冲激励的大气压氦等离子体射流放电特性[J]. 强激光与粒子束, 2016, 28(5):055001. (Shen Yuan, Wang Ruixue, Zhang Cheng, et al. Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse[J]. High Power Laser and Particle Beams, 2016, 28(5): 055001 doi: 10.11884/HPLPB201628.055001
    [10]
    周亦骁, 邵涛, 章程, 等. 微秒脉冲大气压氦气等离子体射流阵列特性[J]. 强激光与粒子束, 2014, 26(4):045003. (Zhou Yixiao, Shao Tao, Zhang Cheng, et al. Atmospheric pressure plasma jet array in helium driven by microsecond pulses[J]. High Power Laser and Particle Beams, 2014, 26(4): 045003 doi: 10.11884/HPLPB201426.045003
    [11]
    Shao Tao, Zhou Yixiao, Zhang Cheng, et al. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1747-1754. doi: 10.1109/TDEI.2015.7116373
    [12]
    Chen Sile, Wang Shuai, Wang Yibo, et al. Surface modification of epoxy Resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum[J]. Applied Surface Science, 2017, 414: 107-113. doi: 10.1016/j.apsusc.2017.03.278
    [13]
    Xie Qing, Lin Haofan, Zhang Shuai, et al. Deposition of SiCxHyOz thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance[J]. Plasma Science and Technology, 2017, 20: 025504.
    [14]
    林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16):256-264. (Lin Haofan, Wang Ruixue, Xie Qing, et al. Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 256-264
    [15]
    Kakiuchi H, Higashida K, Shibata T, et al. High-rate HMDSO-based coatings in open air using atmospheric-pressure plasma jet[J]. Journal of Non-Crystalline Solids, 2012, 358(17): 2462-2465. doi: 10.1016/j.jnoncrysol.2011.12.081
    [16]
    李进, 王泽华, 陈允, 等. 高压气体绝缘输电设备用功能梯度材料研究进展[J]. 高电压技术, 2020, 46(7):2471-2477. (Li Jin, Wang Zehua, Chen Yun, et al. Research progress on functionally graded materials for high voltage gas insulated transmission apparatus[J]. High Voltage Engineering, 2020, 46(7): 2471-2477
    [17]
    Li Nan, Tian Jihuan, Deng Wei, et al. Application of functionally graded materials for solid insulator: fabrication, optimization design, and surface flashover of prototype samples[J]. Applied Mechanics and Materials, 2013, 291/294: 2308-2312. doi: 10.4028/www.scientific.net/AMM.291-294.2308
    [18]
    Hayakawa N, Ishiguro J, Kojima H, et al. Fabrication and simulation of permittivity graded materials for electric field grading of gas insulated power apparatus[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 547-554. doi: 10.1109/TDEI.2015.005237
    [19]
    Liu Zhe, Li Wendong, Wang Yibo, et al. Topology optimization and 3D-printing fabrication feasibility of high voltage FGM insulator[C]//Proceedings of 2016 IEEE International Conference on High Voltage Engineering and Application. Chengdu, China: IEEE, 2016: 1-4.
    [20]
    Ochiai K, Izu A, Oishi R, et al. Fabrication of permittivity graded materials (ε-FGM) by flexible mixture casting method[C]∥Proceedings of 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Cancun, Mexico: IEEE, 2018: 578-581.
    [21]
    Du Boxue, Wang Zehua, Li Jin, et al. Surface FGM insulator based on BaTiO3 magnetron sputtering for electric field grading of AC gas insulated power apparatus[J]. IEEE Access, 2019, 7: 62681-62688. doi: 10.1109/ACCESS.2019.2916888
    [22]
    Li Jin, Liang Hucheng, Du Boxue, et al. Surface functional graded spacer for compact HVDC gaseous insulated system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 664-667. doi: 10.1109/TDEI.2018.007708
    [23]
    Du Boxue, Ran Zhaoyu, Li Jin, et al. Novel insulator with interfacial σ-FGM for DC compact gaseous insulated pipeline[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 818-825. doi: 10.1109/TDEI.2019.8726029
    [24]
    Xie Qing, Ruan Haoou, Xie Jun, et al. Nano-modification for enhancing the DC surface insulation strength of epoxy resin[M]//Du Boxue. Polymer Insulation Applied for HVDC Transmission. Singapore: Springer, 2021.
    [25]
    Tumiran, Maeyama M, Imada H, et al. Flashover from surface charge distribution on alumina insulators in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(4): 400-406. doi: 10.1109/94.625355
    [26]
    Shen Weiwei, Mu Haibao, Zhang Guanjun, et al. Identification of electron and hole trap based on isothermal surface potential decay model[J]. Journal of Applied Physics, 2013, 113: 083706. doi: 10.1063/1.4792491
    [27]
    高宇, 李莹, 崔劲达, 等. 伽玛线辐射对环氧树脂表面陷阱分布的影响[J]. 电工技术学报, 2012, 27(12):264-269. (Gao Yu, Li Ying, Cui Jinda, et al. Effect of gamma-ray irradiation on surface trap distribution of epoxy resin[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 264-269
    [28]
    Zhang Boya, Zhang Guixin, Wang Qiang, et al. Suppression of surface charge accumulation on Al2O3-filled epoxy resin insulator under DC voltage by direct fluorination[J]. AIP Advances, 2015, 5: 127207. doi: 10.1063/1.4937626
    [29]
    Li Shengtao, Huang Qifeng, Sun Jian, et al. Effect of traps on surface flashover of XLPE in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 964-970. doi: 10.1109/TDEI.2010.5492273
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views (789) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return