Liang Zhenhe, Zhou Changlin, Yu Daojie, et al. Analysis and measurement of temperature effect on electromagnetic susceptibility of embedded ADC[J]. High Power Laser and Particle Beams, 2017, 29: 053002. doi: 10.11884/HPLPB201729.170024
Citation: Kang Zhongjian, Wang Cong, Nie Yunliang, et al. Research and application of electric pulse resonance stimulation technology for unconventional reservoir[J]. High Power Laser and Particle Beams, 2021, 33: 065009. doi: 10.11884/HPLPB202133.210113

Research and application of electric pulse resonance stimulation technology for unconventional reservoir

doi: 10.11884/HPLPB202133.210113
  • Received Date: 2021-03-25
  • Rev Recd Date: 2021-05-17
  • Available Online: 2021-05-25
  • Publish Date: 2021-06-15
  • To increase the production of unconventional oil and gas fields, the electric pulse resonance technology of reservoir was studied. The natural frequency of the reservoir was detected by electric pulse, and the discharge frequency was adjusted quickly and accurately by voltage and current loop. A prototype of the resonance stimulation device was developed for field operation, a preliminary construction process was formed, and field experiments were carried out. The results show that the impact range of the shock wave can reach 400−500 m, and the improvement effect of the reservoir fracture is obvious. The application prospect of the device is very broad.
  • [1]
    薛海飞, 朱光辉, 张健, 等. 深部煤层气水力波及压裂工艺研究及应用[J]. 煤炭技术, 2019, 38(5):81-84. (Xue Haifei, Zhu Guanghui, Zhang Jian, et al. Research and application of hydraulic networks fracturing technology in deep coalbed methane[J]. Coal Technology, 2019, 38(5): 81-84
    [2]
    崔晓杰. 等离子脉冲谐振压裂技术[J]. 石油钻探技术, 2015, 43(4):82. (Cui Xiaojie. Plasma pulse resonant fracturing technology[J]. Petroleum Drilling Techniques, 2015, 43(4): 82
    [3]
    Rezaei A, Siddiqui F, Callen N, et al. Pulsed power plasma to enhance near wellbore permeability and improve well performance[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, USA: SPE, 2020.
    [4]
    Rezaei A, Siddiqui F, Awad M M, et al. Pulse plasma stimulation: effect of discharge energy on rock damage under various confining stresses[C]//Proceedings of the 54th U. S. Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2020.
    [5]
    张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9):79-85. (Zhang Yongmin, Qiu Aici, Qin Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79-85
    [6]
    杨鸿凯, 车爱兰, 李跃明. 集中静荷载初始效应对固支梁固有频率的影响[J]. 应用力学学报, 2017, 34(6):1055-1060. (Yang Hongkai, Che Ailan, Li Yueming. Influence of the initial effect of concentrated static load on natural frequencies of fixed beam[J]. Chinese Journal of Applied Mechanics, 2017, 34(6): 1055-1060
    [7]
    李思琪, 闫铁, 李玮. 高频谐波振动冲击破岩机制及试验分析[J]. 中国石油大学学报(自然科学版), 2015, 39(4):85-91. (Li Siqi, Yan Tie, Li Wei, et al. Mechanism experimental study of rock breaking assisted with high frequency harmonic vibration and impaction[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(4): 85-91
    [8]
    宋恒宇, 李根生, 史怀忠, 等. 井底岩石的共振响应分析及数值模拟研究[J]. 振动与冲击, 2019, 38(5):13-20. (Song Hengyu, Li Gensheng, Shi Huaizhong, et al. Analysis and numerical simulation for resonant response of bottom hole rock[J]. Journal of Vibration and Shock, 2019, 38(5): 13-20
    [9]
    康忠健, 王增宏, 龚大建, 等. 基于页岩频谱共振的储层改善装置研制[J]. 电气应用, 2019, 38(12):4-9. (Kang Zhongjian, Wang Zenghong, Gong Dajian, et al. Development of reservoir improvement device based on shale spectral resonance[J]. Electrotechnical Application, 2019, 38(12): 4-9
    [10]
    闫立鹏. 裂缝性岩石振动特性研究及有限元分析[J]. 长江大学学报(自然科学版), 2019, 16(7):104-108. (Yan Lipeng. Study on vibration characteristics of fractured rock and finite element analysis[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(7): 104-108
    [11]
    丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002
    [12]
    吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析[J]. 强激光与粒子束, 2020, 32:045002. (Wu Mingan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002
    [13]
    聂云良, 康忠健, 王聪, 等. 水中脉冲放电电极的烧蚀特性[J/OL]. 高电压技术: 1-10[2021-04-12]. https://doi.org/10.13336/j.1003-6520.hve.20200682.

    Nie Yunliang, Kang Zhongjian, Wang Cong, et al. Electrodes erosion characters of pulse discharge in water[J/OL]. High Voltage Engineering: 1-10[2021-04-12]. https://doi.org/10.13336/j.1003-6520.hve.20200682.
    [14]
    仇聪颖, 管显涛, 刘振, 等. 纳秒脉冲放电处理有机染料废水的实验研究[J]. 强激光与粒子束, 2020, 32:025010. (Qiu Congying, Guan Xiantao, Liu Zhen, et al. Degradation of organic dyes by nanosecond pulsed discharge plasma[J]. High Power Laser and Particle Beams, 2020, 32: 025010 doi: 10.11884/HPLPB202032.190390
    [15]
    Zheng Shichao, Kang Zhongjian, Cui Minghui, et al. Improvement of shale gas reservoir based on plasma pulse shock and frequency resonance technology[J]. Journal of Natural Gas Science and Engineering, 2020, 80: 103403. doi: 10.1016/j.jngse.2020.103403
  • Relative Articles

    [1]Gao Mingxuan, Zhang Yang, Zhang Jun. Influence of high-power microwave signal on temperature distribution of PIN limiter[J]. High Power Laser and Particle Beams, 2024, 36(4): 043022. doi: 10.11884/HPLPB202436.230236
    [2]Chen Zidong, Qin Feng, Zhao Jingtao, Zhao Gang, Liu Zhong. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32(10): 103014. doi: 10.11884/HPLPB202032.200097
    [3]Yuan Yueqian, Chen Zidong, Ma Hongge, Qin Feng. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32(6): 063003. doi: 10.11884/HPLPB202032.190174
    [4]Chen Kaibai, Gao Min, Zhou Xiaodong, Dao Xinyu. Analysis of coupling effect of high-power microwave on millimeter wave fuze[J]. High Power Laser and Particle Beams, 2019, 31(11): 113003. doi: 10.11884/HPLPB201931.190180
    [5]Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30(6): 063002. doi: 10.11884/HPLPB201830.170426
    [6]Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of Ⅰ layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29(09): 093002. doi: 10.11884/HPLPB201729.170087
    [7]Peng Shengren, Yuan Chengwei, Shu Ting, Wu Dapeng, Zhang Qiang. Design of Ka-band high power TM0n-TEM hybrid modes convertor[J]. High Power Laser and Particle Beams, 2016, 28(03): 033014. doi: 10.11884/HPLPB201628.033014
    [8]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Wang Yan. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27(10): 103239. doi: 10.11884/HPLPB201527.103239
    [9]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Zhao Qiang, Zhong Longquan. Numerical simulation and verification of electromagnetic pulse effect of PIN diode limiter[J]. High Power Laser and Particle Beams, 2014, 26(06): 063018. doi: 10.11884/HPLPB201426.063018
    [10]Hu Kai, Li Tianming, Wang Haiyang, Zhou Yihong. High power microwave effect of multi-stage PIN[J]. High Power Laser and Particle Beams, 2014, 26(06): 063015. doi: 10.11884/HPLPB201426.063015
    [11]Wang Shuai, Xu Xiang, Wang Younian. Two-dimensional hybrid simulation of dual-frequency capacitively coupled CF4 plasma[J]. High Power Laser and Particle Beams, 2013, 25(09): 2297-2302. doi: 10.3788/HPLPB20132509.2297
    [12]Zhao Zhenguo, Ma Hongge, Zhao Gang, Wang Yan, Zhong Longquan. Characteristics of temperature during PIN limiter thermal damage caused by microwaves[J]. High Power Laser and Particle Beams, 2013, 25(07): 1741-1746. doi: 10.3788/HPLPB20132507.1741
    [13]zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]zhang haiwei, shi xiaowei, xu le, wei feng. Design and test scheme of high power PIN limiters[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [15]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [16]chen xi, du zhengwei, gong ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [17]zhou min, guo qing-gong, huang ka-ma. Effect on peak leakage caused by junction temperature rise in PIN diode limiter[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [18]wang hai-yang, li jia-yin, zhou yi-hong, li hao, yu xiu-yun. Experimental study and PSpice simulation of PIN diode limiter[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- .
    [19]liu qing-xiang, ge ming-li, yuan cheng-wei, zang jie-feng. A new kind of high power microwave phase shifter[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [20]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(2)

    1. 吴旭景,王蒙军,吴建飞,李彬鸿,郝宁,高见头,李宏,张红丽. 体Si和SOI工艺SRAM芯片电磁敏感度的温度效应. 电波科学学报. 2021(01): 101-108 .
    2. 程俊平,徐志坚,周长林,张栋耀. 数字逻辑电路GPIO电磁抗扰度的热应力效应分析. 电波科学学报. 2019(04): 447-454 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 70.1 %META: 70.1 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 0.7 %其他: 0.7 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Japan: 0.0 %Japan: 0.0 %Koesan: 0.0 %Koesan: 0.0 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Romania: 0.0 %Romania: 0.0 %Singapore: 0.2 %Singapore: 0.2 %Ukraine: 0.1 %Ukraine: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.0 %United States: 0.0 %[]: 1.0 %[]: 1.0 %上海: 0.5 %上海: 0.5 %东莞: 0.1 %东莞: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伊朗: 0.0 %伊朗: 0.0 %兰州: 0.0 %兰州: 0.0 %北京: 22.2 %北京: 22.2 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.1 %南京: 0.1 %印多尔: 0.1 %印多尔: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.0 %天津: 0.0 %太原: 0.1 %太原: 0.1 %宜昌: 0.0 %宜昌: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %巴中: 0.0 %巴中: 0.0 %广州: 0.1 %广州: 0.1 %张家口: 0.2 %张家口: 0.2 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.2 %杭州: 0.2 %桃园: 0.0 %桃园: 0.0 %武汉: 0.4 %武汉: 0.4 %泰安: 0.0 %泰安: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %纳什维尔: 0.2 %纳什维尔: 0.2 %绵阳: 0.5 %绵阳: 0.5 %罗利: 0.2 %罗利: 0.2 %艾因: 0.3 %艾因: 0.3 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芝加哥: 0.0 %芝加哥: 0.0 %西宁: 48.4 %西宁: 48.4 %西安: 1.5 %西安: 1.5 %西安市长安区: 0.0 %西安市长安区: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.2 %运城: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 0.4 %重庆: 0.4 %金奈: 0.0 %金奈: 0.0 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %雷德蒙德: 0.0 %雷德蒙德: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %其他其他ChinaIndiaJapanKoesanKorea Republic ofRomaniaSingaporeUkraineUnited KingdomUnited States[]上海东莞中山临汾丹东伊斯坦布尔伊朗兰州北京华盛顿州南京印多尔台州合肥咸阳哈尔科夫嘉兴天津太原宜昌宝鸡巴中广州张家口德黑兰成都扬州无锡昆明晋城普洱杭州桃园武汉泰安洛阳济南海得拉巴淄博深圳温州渭南湖州漯河福州秦皇岛纳什维尔绵阳罗利艾因芒廷维尤芝加哥西宁西安西安市长安区诺沃克贵阳运城郑州重庆金奈长沙长治阳泉雷德蒙德首尔特别

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (990) PDF downloads(95) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return