Citation: | Kang Zhongjian, Wang Cong, Nie Yunliang, et al. Research and application of electric pulse resonance stimulation technology for unconventional reservoir[J]. High Power Laser and Particle Beams, 2021, 33: 065009. doi: 10.11884/HPLPB202133.210113 |
[1] |
薛海飞, 朱光辉, 张健, 等. 深部煤层气水力波及压裂工艺研究及应用[J]. 煤炭技术, 2019, 38(5):81-84. (Xue Haifei, Zhu Guanghui, Zhang Jian, et al. Research and application of hydraulic networks fracturing technology in deep coalbed methane[J]. Coal Technology, 2019, 38(5): 81-84
|
[2] |
崔晓杰. 等离子脉冲谐振压裂技术[J]. 石油钻探技术, 2015, 43(4):82. (Cui Xiaojie. Plasma pulse resonant fracturing technology[J]. Petroleum Drilling Techniques, 2015, 43(4): 82
|
[3] |
Rezaei A, Siddiqui F, Callen N, et al. Pulsed power plasma to enhance near wellbore permeability and improve well performance[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, USA: SPE, 2020.
|
[4] |
Rezaei A, Siddiqui F, Awad M M, et al. Pulse plasma stimulation: effect of discharge energy on rock damage under various confining stresses[C]//Proceedings of the 54th U. S. Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2020.
|
[5] |
张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9):79-85. (Zhang Yongmin, Qiu Aici, Qin Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79-85
|
[6] |
杨鸿凯, 车爱兰, 李跃明. 集中静荷载初始效应对固支梁固有频率的影响[J]. 应用力学学报, 2017, 34(6):1055-1060. (Yang Hongkai, Che Ailan, Li Yueming. Influence of the initial effect of concentrated static load on natural frequencies of fixed beam[J]. Chinese Journal of Applied Mechanics, 2017, 34(6): 1055-1060
|
[7] |
李思琪, 闫铁, 李玮. 高频谐波振动冲击破岩机制及试验分析[J]. 中国石油大学学报(自然科学版), 2015, 39(4):85-91. (Li Siqi, Yan Tie, Li Wei, et al. Mechanism experimental study of rock breaking assisted with high frequency harmonic vibration and impaction[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(4): 85-91
|
[8] |
宋恒宇, 李根生, 史怀忠, 等. 井底岩石的共振响应分析及数值模拟研究[J]. 振动与冲击, 2019, 38(5):13-20. (Song Hengyu, Li Gensheng, Shi Huaizhong, et al. Analysis and numerical simulation for resonant response of bottom hole rock[J]. Journal of Vibration and Shock, 2019, 38(5): 13-20
|
[9] |
康忠健, 王增宏, 龚大建, 等. 基于页岩频谱共振的储层改善装置研制[J]. 电气应用, 2019, 38(12):4-9. (Kang Zhongjian, Wang Zenghong, Gong Dajian, et al. Development of reservoir improvement device based on shale spectral resonance[J]. Electrotechnical Application, 2019, 38(12): 4-9
|
[10] |
闫立鹏. 裂缝性岩石振动特性研究及有限元分析[J]. 长江大学学报(自然科学版), 2019, 16(7):104-108. (Yan Lipeng. Study on vibration characteristics of fractured rock and finite element analysis[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(7): 104-108
|
[11] |
丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002
|
[12] |
吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析[J]. 强激光与粒子束, 2020, 32:045002. (Wu Mingan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002
|
[13] |
聂云良, 康忠健, 王聪, 等. 水中脉冲放电电极的烧蚀特性[J/OL]. 高电压技术: 1-10[2021-04-12]. https://doi.org/10.13336/j.1003-6520.hve.20200682.
Nie Yunliang, Kang Zhongjian, Wang Cong, et al. Electrodes erosion characters of pulse discharge in water[J/OL]. High Voltage Engineering: 1-10[2021-04-12]. https://doi.org/10.13336/j.1003-6520.hve.20200682.
|
[14] |
仇聪颖, 管显涛, 刘振, 等. 纳秒脉冲放电处理有机染料废水的实验研究[J]. 强激光与粒子束, 2020, 32:025010. (Qiu Congying, Guan Xiantao, Liu Zhen, et al. Degradation of organic dyes by nanosecond pulsed discharge plasma[J]. High Power Laser and Particle Beams, 2020, 32: 025010 doi: 10.11884/HPLPB202032.190390
|
[15] |
Zheng Shichao, Kang Zhongjian, Cui Minghui, et al. Improvement of shale gas reservoir based on plasma pulse shock and frequency resonance technology[J]. Journal of Natural Gas Science and Engineering, 2020, 80: 103403. doi: 10.1016/j.jngse.2020.103403
|
[1] | Gao Mingxuan, Zhang Yang, Zhang Jun. Influence of high-power microwave signal on temperature distribution of PIN limiter[J]. High Power Laser and Particle Beams, 2024, 36(4): 043022. doi: 10.11884/HPLPB202436.230236 |
[2] | Chen Zidong, Qin Feng, Zhao Jingtao, Zhao Gang, Liu Zhong. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32(10): 103014. doi: 10.11884/HPLPB202032.200097 |
[3] | Yuan Yueqian, Chen Zidong, Ma Hongge, Qin Feng. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32(6): 063003. doi: 10.11884/HPLPB202032.190174 |
[4] | Chen Kaibai, Gao Min, Zhou Xiaodong, Dao Xinyu. Analysis of coupling effect of high-power microwave on millimeter wave fuze[J]. High Power Laser and Particle Beams, 2019, 31(11): 113003. doi: 10.11884/HPLPB201931.190180 |
[5] | Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30(6): 063002. doi: 10.11884/HPLPB201830.170426 |
[6] | Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of Ⅰ layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29(09): 093002. doi: 10.11884/HPLPB201729.170087 |
[7] | Peng Shengren, Yuan Chengwei, Shu Ting, Wu Dapeng, Zhang Qiang. Design of Ka-band high power TM0n-TEM hybrid modes convertor[J]. High Power Laser and Particle Beams, 2016, 28(03): 033014. doi: 10.11884/HPLPB201628.033014 |
[8] | Zhao Zhenguo, Zhou Haijing, Ma Hongge, Wang Yan. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27(10): 103239. doi: 10.11884/HPLPB201527.103239 |
[9] | Zhao Zhenguo, Zhou Haijing, Ma Hongge, Zhao Qiang, Zhong Longquan. Numerical simulation and verification of electromagnetic pulse effect of PIN diode limiter[J]. High Power Laser and Particle Beams, 2014, 26(06): 063018. doi: 10.11884/HPLPB201426.063018 |
[10] | Hu Kai, Li Tianming, Wang Haiyang, Zhou Yihong. High power microwave effect of multi-stage PIN[J]. High Power Laser and Particle Beams, 2014, 26(06): 063015. doi: 10.11884/HPLPB201426.063015 |
[11] | Wang Shuai, Xu Xiang, Wang Younian. Two-dimensional hybrid simulation of dual-frequency capacitively coupled CF4 plasma[J]. High Power Laser and Particle Beams, 2013, 25(09): 2297-2302. doi: 10.3788/HPLPB20132509.2297 |
[12] | Zhao Zhenguo, Ma Hongge, Zhao Gang, Wang Yan, Zhong Longquan. Characteristics of temperature during PIN limiter thermal damage caused by microwaves[J]. High Power Laser and Particle Beams, 2013, 25(07): 1741-1746. doi: 10.3788/HPLPB20132507.1741 |
[13] | zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- . |
[14] | zhang haiwei, shi xiaowei, xu le, wei feng. Design and test scheme of high power PIN limiters[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[15] | zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[16] | chen xi, du zhengwei, gong ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- . |
[17] | zhou min, guo qing-gong, huang ka-ma. Effect on peak leakage caused by junction temperature rise in PIN diode limiter[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- . |
[18] | wang hai-yang, li jia-yin, zhou yi-hong, li hao, yu xiu-yun. Experimental study and PSpice simulation of PIN diode limiter[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- . |
[19] | liu qing-xiang, ge ming-li, yuan cheng-wei, zang jie-feng. A new kind of high power microwave phase shifter[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- . |
[20] | huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- . |
1. | 吴旭景,王蒙军,吴建飞,李彬鸿,郝宁,高见头,李宏,张红丽. 体Si和SOI工艺SRAM芯片电磁敏感度的温度效应. 电波科学学报. 2021(01): 101-108 . ![]() | |
2. | 程俊平,徐志坚,周长林,张栋耀. 数字逻辑电路GPIO电磁抗扰度的热应力效应分析. 电波科学学报. 2019(04): 447-454 . ![]() |