Citation: | Zhuang Longyu, Yang Junxiang, Sugai Taichi, et al. Compact all-solid-state high frequency LC-Marx generator based on magnetic switch[J]. High Power Laser and Particle Beams, 2021, 33: 065003. doi: 10.11884/HPLPB202133.210114 |
[1] |
江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1):10-15. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010
|
[2] |
丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002
|
[3] |
Nunnally W C. Critical component requirements for compact pulse power system architectures[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1262-1267. doi: 10.1109/TPS.2005.852406
|
[4] |
Mankowski J, Kristiansen M. A review of short pulse generator technology[J]. IEEE Transactions on Plasma Science, 2000, 28(1): 102-108. doi: 10.1109/27.842875
|
[5] |
Chen Rong, Yang Jianhua, Cheng Xinbing, et al. Developing a solid-state quasi-square pulse Marx generator[J]. Review of Scientific Instruments, 2018, 89: 064707. doi: 10.1063/1.5034200
|
[6] |
Achour Y, Starzyński J, Łasica A. New Marx generator architecture with a controllable output based on IGBTs[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3271-3278. doi: 10.1109/TPS.2017.2766879
|
[7] |
马成刚, 李玺钦, 李亚维, 等. 150 kV快前沿低抖动Marx发生器研制[J]. 强激光与粒子束, 2015, 27:045001. (Ma Chenggang, Li Xiqin, Li Yawei, et al. Development of 150 kV fast risetime low jitter Marx generator[J]. High Power Laser and Particle Beams, 2015, 27: 045001 doi: 10.11884/HPLPB201527.045001
|
[8] |
饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33:025001. (Rao Junfeng, Li Encheng, Wang Yonggang, et al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001
|
[9] |
Ren Xiaojing, Sugai T, Tokuchi A, et al. Solid-state Marx generator circuit based on inductive energy storage[J]. IEEE Transactions on Plasma Science, 2021: 1-6.
|
[10] |
Ma Jianhao, Yu Liang, Sun Wenjie, et al. Investigation and evaluation of solid-state Marx pulse generator based on 3-D busbar[J]. IEEE Transactions on Plasma Science, 2021, 49(5): 1597-1604. doi: 10.1109/TPS.2021.3073489
|
[11] |
Bischoff R. An alternative circuitry for a transformer-coupled LC inversion generator[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3424-3428. doi: 10.1109/TPS.2020.3016949
|
[12] |
Bischoff R, Brommer V, Stoll M, et al. Fast semiconductor switching modules for transformer-coupled LC inversion generators[J]. IEEE Transactions on Plasma Science, 2017, 45(10): 2618-2622. doi: 10.1109/TPS.2017.2716833
|
[13] |
Engel T G, Kaplicki C, Nunnally W C. High-voltage pulse production using transformer-coupled LC vector inversion generators[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1377-1381. doi: 10.1109/27.901201
|
[14] |
Fan Xuliang, Liu Jinliang. A compact, all solid-state LC high voltage generator[J]. Review of Scientific Instruments, 2013, 84: 064703. doi: 10.1063/1.4808314
|
[15] |
Fan Xuliang, Liu Jinliang. An LC generator based on accurate synchronization controlling of multisecondary windings saturable pulse transformer[J]. IEEE Transactions on Plasma Science, 2014, 42(1): 149-153. doi: 10.1109/TPS.2013.2288116
|
[16] |
Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
|
[1] | Liu Qi, Du Yinglei, Xiang Rujian, Li Guohui, Zhang Qiushi, Xiang Zhenjiao, Wu Jing, Yue Xian, Bao Anchao, You Jiang. Deep learning phase inversion technique for single frame image based on Walsh function modulation[J]. High Power Laser and Particle Beams, 2024, 36(6): 069002. doi: 10.11884/HPLPB202436.240048 |
[2] | Zhang Yushuang, Xie Xiaogang, Su Hua, Wang Rui, Zhang Feizhou. Method of real-time target image generation under multi-light source illumination[J]. High Power Laser and Particle Beams, 2024, 36(6): 061004. doi: 10.11884/HPLPB202436.230442 |
[3] | Zhao Dong, Zhou Huixin, Yu Junna, Wang Shicheng, Qin Hanlin, Cheng Kuanhong. Tracking of infrared dim small target in complex sky background[J]. High Power Laser and Particle Beams, 2018, 30(6): 061002. doi: 10.11884/HPLPB201830.170511 |
[4] | Han Lei, Zhang Haiyang, Ma Xuesong, Zhao Changming, Yang Suhui. Real-time detection system of cat-eye effect target based on embedded platform[J]. High Power Laser and Particle Beams, 2015, 27(01): 011013. doi: 10.11884/HPLPB201527.011013 |
[5] | Qi Conghui, Zhao Zhiqin, Xu Jing, Zhang Hai. Electromagnetic scattering and image processing of targets under complex environment based on compressive sensing method[J]. High Power Laser and Particle Beams, 2014, 26(07): 073206. doi: 10.11884/HPLPB201426.073206 |
[6] | Xue Mogen, Liu Xiaocheng. Research on polarization imaging detection method for moving object in complex scenes[J]. High Power Laser and Particle Beams, 2014, 26(09): 091004. doi: 10.11884/HPLPB201426.091004 |
[7] | Huang Dequan, Yao Xin, ZHao Xi, ZHang CHao, Wu Cuicui, Gao FuHua. Light intensity distribution calculation of curved surface diffraction patterns applied in ICF[J]. High Power Laser and Particle Beams, 2012, 24(01): 69-74. |
[8] | du shiming, wu xiaobo, yang hua, zhang wei, wei weidong, zeng kai, chen shanjing, . Modulation of ground targets infrared characteristic with artificial illuminator[J]. High Power Laser and Particle Beams, 2011, 23(05): 0- . |
[9] | yuan hong, sun chengwei, zhao jianheng, li mu. Computational analysis of ablated thickness of films in launch of laser-driven flyer plates[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- . |
[10] | huang jun, hu yun, zhang haoran, jin yan. Coupling effect of low-frequency electromagnetic pulse on complex electrically large object[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- . |
[11] | wu ronghua, wang jiang’an, ren xichuang, kang sheng. Real-time inversion algorithm of multi-wavelength atmospheric transmissivity for aerial target infrared radiation[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- . |
[12] | zhang kunhua, yang xuan. Detection of extended target in complex background based on fractal features[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- . |
[13] | su ding, zhang qi-heng, xie sheng-hua. Fractal segmentation based on morphology model for extended target under complex environment[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[14] | hu xiao-juan, ge de-biao, wei bing, yang li-xia. Conformal FDTD mesh-generating technique for objects with triangle-patch model[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- . |
[15] | li yi, liang bu-ge, zhang guang-fu, yuan nai-chang. Simulation and experiment for scattering of complex objects stimulated by powerful electromagnetic pulse[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- . |
[16] | li xiao-bing, peng ren-jun, wu jian. Real time measurement of the object angular vibration by laser speckles[J]. High Power Laser and Particle Beams, 2004, 16(04): 0- . |
[17] | jiang xiao-guo, tan zhao, li ze-ren, wang wan-li, wang wei, qi shuang-xi. nfluence of X-ray areasource on LSF in radiograghy system[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- . |
[18] | ji xiao ling, l bai da, . Numerical simulation of the transformation of HermiteGaussian beams through a complicated optical system with multiple hardedged apertures[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- . |
[19] | wang lin, xu hong liang, shang lei, wang xiang qi, li wei min. Longitudinal impedance calculation of coated ceramic vacuum chamber at HLS[J]. High Power Laser and Particle Beams, 2003, 15(04): 0- . |