Citation: | Zhang Jin, Yuan Zhao, Chen Lixue, et al. Vacuum arc plasma emission spectroscopy diagnosis[J]. High Power Laser and Particle Beams, 2021, 33: 065014. doi: 10.11884/HPLPB202133.210116 |
[1] |
王章启, 邹积岩, 何俊佳, 等. 电力开关技术[M]. 武汉: 华中科技大学出版社, 2003.
Wang Zhangqi, Zou Jiyan, He Junjia et al. Power switch technology[M]. Wuhan: Huazhong University of Science & Technology Press, 2003.
|
[2] |
李建基. 真空断路器技术的进步[J]. 电器工业, 2001(7):14-15. (Li Jianji. Advances in vacuum circuit breaker technology[J]. Electrical Industry, 2001(7): 14-15
|
[3] |
董攀, 龙继东, 陈德彪, 等. 强流激光离子源中的等离子体参数诊断[J]. 强激光与粒子束, 2016, 28:055103. (Dong Pan, Long Jidong, Chen Debiao, et al. Diagnosis of plasma in high current laser ion source[J]. High Power Laser and Particle Beams, 2016, 28: 055103 doi: 10.11884/HPLPB201628.055103
|
[4] |
Khakpour A, Franke S, Methling R, et al. Optical and electrical investigation of transition from anode spot type 1 to anode spot type 2[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2126-2134. doi: 10.1109/TPS.2017.2690572
|
[5] |
Methling R, Gorchakov S, Lisnyak M V, et al. Spectroscopic investigation of a Cu—Cr vacuum arc[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2303-2309. doi: 10.1109/TPS.2015.2443856
|
[6] |
Lisnyak M, Pipa A V, Gorchakov S, et al. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes[J]. Journal of Applied Physics, 2015, 188: 123304.
|
[7] |
Khakpour A, Methling R, Franke S, et al. Vapor density and electron density determination during high-current anode phenomena in vacuum arcs[J]. Journal of Applied Physics, 2018, 124: 243301. doi: 10.1063/1.5057753
|
[8] |
王立军, 贾申利, 史宗谦, 等. 开距对不同状态下真空电弧特性影响的仿真分析[J]. 中国电机工程学报, 2008, 28(7):154-160. (Wang Lijun, Jia Shenli, Shi Zongqian, et al. Simulation analysis of influence of electrode separations on vacuum arcs characteristics under different states[J]. Proceedings of the CSEE, 2008, 28(7): 154-160 doi: 10.3321/j.issn:0258-8013.2008.07.025
|
[9] |
王立军, 贾申利, 史宗谦, 等. 电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J]. 电工技术学报, 2007, 22(1):54-61. (Wang Lijun, Jia Shenli, Shi Zongqian, et al. Numerical simulation of effect of arc current and axial magnetic field on low current vacuum arc characteristics[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 54-61 doi: 10.3321/j.issn:1000-6753.2007.01.010
|
[10] |
Wang Haoran, Wang Zhenxing, Liu Jiankun, et al. Optical absorption spectroscopy of metallic (Cr) vapor in a vacuum arc[J]. Journal of Physics D: Applied Physics, 2017, 51: 035203.
|
[11] |
Gortschakow S, Popov S, Khakpour A, et al. Cu and Cr density determination during high-current discharge modes in vacuum arcs[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 181-184.
|
[12] |
Khakpour A, Popov S, Franke S, et al. Determination of Cr density after current zero in a high-current vacuum arc considering anode plume[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2108-2114. doi: 10.1109/TPS.2017.2681898
|
[13] |
Wang Zhenxing, Liu Jiankun, Li Yuecheng, et al. Two-dimensional observation of copper atoms after forced extinction of vacuum arcs by laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 2020, 48(8): 2777-2789. doi: 10.1109/TPS.2020.3008277
|
[14] |
Liu Jiankun, Li Yi, Geng Yingsan, et al. Two dimensional distribution of metallic (Cu) vapor in a forced vacuum arc extinction by LIF[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 403-406.
|
[15] |
Liu Jiankun, Zha Ziru, Wang Zhenxing, et al. Two dimensional distribution diagnostic of copper vapor in a vacuum arc by laser-induced fluorescence[C]//2019 5th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). Kitakyushu: IEEE, 2019: 144-147.
|
[16] |
Lins G. Measurement of the neutral copper vapor density around current zero of a 500-A vacuum arc using laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 1985, 13(6): 577-581. doi: 10.1109/TPS.1985.4316476
|
[17] |
Wang Haoran, Liu Ziyuan, Liu Jiankun, et al. Investigation of vacuum arc extinction process by planar laser-induced fluorescence[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 313-316.
|
[18] |
Lins G. Collisional transfer and neutral copper vapour density during a diffuse vacuum arc[J]. Journal of Physics D: Applied Physics, 1990, 23: 784. doi: 10.1088/0022-3727/23/7/006
|
[19] |
赵文华, 唐皇哉, 沈岩, 等. 谱线强度法所测得温度的物理意义[J]. 光谱学与光谱分析, 2007, 27(11):2145-2149. (Zhao Wenhua, Tang Huangzai, Shen Yan, et al. Physical meaning of temperature measured by spectral line intensity method[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2145-2149
|
[20] |
Griem H R. Plasma spectroscopy[M]. New York: McGraw-Hill, 1964.
|
[21] |
陈新坤. 原子发射光谱分析原理[M]. 天津: 天津科学技术出版社, 1991.
Chen Xinkun. Principles of atomic emission spectroscopy[M] Tianjin: Tianjin Science and Technology Press, 1991).
|
[22] |
Khakpour A, Franke S, Gortschakow S, et al. Investigation of anode plume in vacuum arcs using different optical diagnostic methods[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 3488-3495. doi: 10.1109/TPS.2019.2904458
|