Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021. doi: 10.11884/HPLPB202133.210118
Citation: Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021. doi: 10.11884/HPLPB202133.210118

Study on purification of flaky graphite by argon arc plasma torch

doi: 10.11884/HPLPB202133.210118
  • Received Date: 2021-03-29
  • Rev Recd Date: 2021-06-03
  • Available Online: 2021-06-11
  • Publish Date: 2021-06-15
  • High purity graphite with purity above 99.9%, as an industrial raw material, plays an important role in the high-tech field. The existing physical and chemical methods of graphite purification technology has high cost serious damage to equipment and environment by acid and alkali, and complex processes. Thus the development of an excellent and effective graphite purification technology has become a research hotspot in recent years at home and abroad. A purification method of flaky graphite by arc plasma is established in this paper. The characteristics of high temperature which can be produced quickly by using arc plasma is used to treat the flaky graphite samples with a purity of 94.18% from Jixi City of Heilongjiang Province, under high temperature. The results show that the optimal discharge parameters are air flow rate 25 L/min, current 400 A and power 10 kW. At this point, the surface temperature of the arc plasma is up to 3350 ℃. Scanning electron microscope is used to compare the microstructure of graphite samples before and after arc processing to find the characteristics of shredding and breaking of graphite samples. The graphite purity and impurities are analysed according to national standard chemical analysis method of GB/T 3521 2008. After arc treatment, the purity of graphite is increased to 99.21%.
  • [1]
    李箫波, 魏文赋, 左浩梓, 等. 基于Mo2C晶粒增强的铜/石墨复合材料浸渗特性与优化[J/OL]. 中国电机工程学报, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html.

    Li Xiaobo, Wei Wenfu, Zuo Haozi, et al. Infiltration characteristics and optimization of copper/graphite composite reinforced by Mo2C grain[J/OL]. Proceedings of the CSEE, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html
    [2]
    张谦, 文书明, 丰奇成, 等. 鳞片石墨的提纯工艺研究现状与展望[J]. 硅酸盐通报, 2019, 38(2):392-397. (Zhang Qian, Wen Shuming, Feng Qicheng, et al. Research status and prospect of flake graphite purification technology[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 392-397
    [3]
    Wang Yukun, Gao Shutao, Zang Xiaohuan, et al. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples[J]. Analytica Chimica Acta, 2012, 716: 112-118. doi: 10.1016/j.aca.2011.12.007
    [4]
    袁来敏. 辽宁某鳞片石墨矿浮选工艺试验[J]. 现代矿业, 2013, 29(6):94-96. (Yuan Laimin. The process testing of floatation process of a scale graphite mine in Liaoning province[J]. Modern Mining, 2013, 29(6): 94-96 doi: 10.3969/j.issn.1674-6082.2013.06.033
    [5]
    Li Yufeng, Zhu Shifu, Wang Lei. Purification of natural graphite by microwave assisted acid leaching[J]. Carbon, 2013, 55: 377-378.
    [6]
    赵越, 刘敬党, 张艳飞, 等. 湖南某地隐晶质石墨提纯试验研究[J]. 非金属矿, 2017, 40(6):66-68. (Zhao Yue, Liu Jingdang, Zhang Yanfei, et al. Study on the refine of aphanitic graphite from Hunan[J]. Non-Metallic Mines, 2017, 40(6): 66-68 doi: 10.3969/j.issn.1000-8098.2017.06.021
    [7]
    Adham K, Bowes G. Natural graphite purification through chlorination in fluidized bed reactor[M]//Davis B. Extraction 2018: the Minerals, Metals & Materials Series. Cham: Springer, 2018: 2505-2512.
    [8]
    张向军, 陈斌, 高欣明. 高温石墨化提纯晶质(鳞片)石墨[J]. 炭素技术, 2001(2):39-40. (Zhang Xiangjun, Chen Bin, Gao Xinming. Depuration of scaly graphites by high temperature graphitization[J]. Carbon Techniques, 2001(2): 39-40 doi: 10.3969/j.issn.1001-3741.2001.02.010
    [9]
    李元, 郜晶, 朱光远, 等. 液相等离子体技术制备碳纳米材料的进展与趋势[J]. 中国电机工程学报, 2021, 41(8):2909-2919. (Li Yuan, Gao Jing, Zhu Guangyuan, et al. Advances and trends of carbon nanomaterial synthesis by liquid-plasma processing[J]. Proceedings of the CSEE, 2021, 41(8): 2909-2919
    [10]
    赵莉华, 冀一玮, 尚豪, 等. 正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响[J/OL]. 中国电机工程学报, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html.

    Zhao Lihua, Ji Yiwei, Shang Hao, et al. Propagation mechanism of a positive DC driven atmospheric pressure helium plasma jet: influences of He-air mixing layer[J/OL]. Proceedings of the CSEE, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html
    [11]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [12]
    Fedoseeva Y V, Gorodetskiy D V, Makarova A A, et al. Influence of the temperature of molybdenum substrates on the structure of diamond coatings obtained by chemical vapor deposition from a high-speed microwave plasma jet[J]. Journal of Structural Chemistry, 2021, 62(1): 153-162. doi: 10.1134/S0022476621010182
    [13]
    Hsu M, Sweeney M P, Johnson D L. Thermal effects during microwave plasma sintering of ceramics[J]. MRS Online Proceedings Library, 1990, 189(1): 289-301.
    [14]
    古忠涛, 叶高英, 金玉萍. 射频感应等离子体制备球形钛粉的成分分析[J]. 强激光与粒子束, 2012, 24(6):1409-1413. (Gu Zhongtao, Ye Gaoying, Jin Yuping. Chemical compositions of spherical titanium powders prepared by RF induction plasma[J]. High Power Laser and Particle Beams, 2012, 24(6): 1409-1413 doi: 10.3788/HPLPB20122406.1409
    [15]
    Cao Jin, Matsoukas T. Nanoparticles and nanocomposites in RF plasma[J]. MRS Online Proceedings Library, 2000, 635: C4.12.
    [16]
    钟良, 侯力, 古忠涛. 射频感应等离子体制备球形氧化铝的工艺研究[J]. 强激光与粒子束, 2014, 26:089003. (Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma[J]. High Power Laser and Particle Beams, 2014, 26: 089003 doi: 10.11884/HPLPB201426.089003
    [17]
    Njiki A, Kamgang-Youbi G, Lontsi C D, et al. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain[J]. International Journal of Environmental Science and Technology, 2016, 13(1): 263-274. doi: 10.1007/s13762-015-0867-1
    [18]
    Iya-Sou D, Laminsi S, Cavadias S, et al. Removal of model pollutants in aqueous solution by gliding arc discharge: determination of removal mechanisms. Part I: experimental study[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 97-113. doi: 10.1007/s11090-012-9423-7
    [19]
    Mountapmbeme-Kouotou P, Laminsi S, Acayanka E, et al. Degradation of palm oil refinery wastewaters by non-thermal gliding arc discharge at atmospheric pressure[J]. Environmental Monitoring and Assessment, 2013, 185(7): 5789-5800. doi: 10.1007/s10661-012-2984-3
    [20]
    Kaku S M Y. Evaluation of vacuum arc melted-powder metallurgy Al–ZrB2 composite[M]//Lakshminarayanan A, Idapalapati S, Vasudevan M. Advances in Materials and Metallurgy. Singapore: Springer, 2019: 83-90.
    [21]
    王振廷, 孟君晟. 石墨提纯方法及工艺[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.

    Wang Zhenting, Meng Junsheng. The method and technology of purifying graphite[M]. Harbin: Harbin Institute of Technology Press, 2018
  • Relative Articles

  • Cited by

    Periodical cited type(7)

    1. 于倩,张晓臣,阚侃. 天然鳞片石墨提纯研究进展. 中国矿业. 2024(07): 254-260 .
    2. 吴久龙,俞哲,肖越,程思远,刘开颖,蔡伟康,戴安娜. 利用电荷-电压李萨如图形法测量介质阻挡放电参量. 物理实验. 2023(06): 48-53 .
    3. 吴延龙,白一鸣,杨志懋,孔春才. 等离子体快速制备中间相炭微球磁性复合材料及其吸波性能研究. 应用化工. 2023(07): 1954-1961 .
    4. 彭蠡,王平阳,王建维. 直流电弧等离子体炬的数值模拟. 上海航天(中英文). 2023(04): 73-79 .
    5. 戴宏宇,郭景润,俞斌,沈昊,李黎. 强流脉冲电弧作用下石墨电极蒸发特性. 强激光与粒子束. 2022(07): 44-50 . 本站查看
    6. 高成伟,吴丹,徐博,李洋. 利用激光衍射法测定锂离子电池石墨类负极材料的粒度分布研究. 黑龙江工业学院学报(综合版). 2022(08): 85-92 .
    7. 杨家智,周扬,刘光,樊军花,周国江. 石墨提纯工艺的研究进展. 炭素. 2021(03): 23-29 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.1 %FULLTEXT: 22.1 %META: 74.1 %META: 74.1 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.4 %其他: 7.4 %其他: 0.7 %其他: 0.7 %Arlington: 0.2 %Arlington: 0.2 %Australia: 0.2 %Australia: 0.2 %Canada: 0.2 %Canada: 0.2 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Osaka: 0.2 %Osaka: 0.2 %Sri Lanka: 0.2 %Sri Lanka: 0.2 %Sweden: 0.4 %Sweden: 0.4 %United States: 0.3 %United States: 0.3 %Viersen: 0.5 %Viersen: 0.5 %[]: 1.0 %[]: 1.0 %三明: 0.1 %三明: 0.1 %上海: 3.3 %上海: 3.3 %东京: 0.5 %东京: 0.5 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %凤凰城: 0.2 %凤凰城: 0.2 %剑桥: 0.2 %剑桥: 0.2 %包头: 0.1 %包头: 0.1 %北京: 3.0 %北京: 3.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.2 %南京: 0.2 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.5 %合肥: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %多伦多: 0.2 %多伦多: 0.2 %大庆: 0.1 %大庆: 0.1 %大连: 0.2 %大连: 0.2 %天津: 1.0 %天津: 1.0 %太原: 0.2 %太原: 0.2 %安顺: 0.1 %安顺: 0.1 %宣城: 0.3 %宣城: 0.3 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %希尔布鲁克: 0.1 %希尔布鲁克: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.1 %广州: 0.1 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %张家口: 3.3 %张家口: 3.3 %成都: 1.1 %成都: 1.1 %扬州: 0.1 %扬州: 0.1 %拉萨: 0.1 %拉萨: 0.1 %无锡: 0.3 %无锡: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.5 %杭州: 0.5 %梅州: 0.1 %梅州: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %波鸿: 0.1 %波鸿: 0.1 %泰安: 0.1 %泰安: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %深圳: 0.2 %深圳: 0.2 %渥太华: 0.5 %渥太华: 0.5 %温州: 0.1 %温州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %烟台: 0.1 %烟台: 0.1 %焦作: 0.2 %焦作: 0.2 %石家庄: 2.7 %石家庄: 2.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 27.3 %芒廷维尤: 27.3 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.4 %苏州: 0.4 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 29.0 %西宁: 29.0 %西安: 0.3 %西安: 0.3 %贵阳: 0.2 %贵阳: 0.2 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %运城: 1.2 %运城: 1.2 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.4 %郑州: 1.4 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.2 %铁岭: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 0.8 %长沙: 0.8 %长治: 0.2 %长治: 0.2 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.4 %青岛: 0.4 %魁北克: 0.2 %魁北克: 0.2 %鸡西: 0.4 %鸡西: 0.4 %黑森州: 0.1 %黑森州: 0.1 %其他其他ArlingtonAustraliaCanadaChinaIndiaOsakaSri LankaSwedenUnited StatesViersen[]三明上海东京东莞中卫中山丹东佛山保定兰州凤凰城剑桥包头北京十堰南京博阿努瓦台州合肥哈尔滨哥伦布嘉兴圣克拉拉圣彼得堡多伦多大庆大连天津太原安顺宣城布鲁塞尔希尔布鲁克常州广州库比蒂诺张家口成都扬州拉萨无锡昆明晋城普洱杭州梅州武汉沈阳波鸿泰安洛阳济南深圳渥太华温州湘潭漯河烟台焦作石家庄秦皇岛绵阳芒廷维尤芝加哥苏州衡阳衢州西宁西安贵阳赫尔辛基运城连云港邯郸郑州鄂州重庆铁岭长春长沙长治阳泉青岛魁北克鸡西黑森州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views (1229) PDF downloads(63) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return