Wang Xinhua, Pei Yuyang, Yang Jian. Development and application of temperature-dependent thermal neutron scattering data of light water for compensated neutron logging[J]. High Power Laser and Particle Beams, 2015, 27: 074003. doi: 10.11884/HPLPB201527.074003
Citation: Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021. doi: 10.11884/HPLPB202133.210118

Study on purification of flaky graphite by argon arc plasma torch

doi: 10.11884/HPLPB202133.210118
  • Received Date: 2021-03-29
  • Rev Recd Date: 2021-06-03
  • Available Online: 2021-06-11
  • Publish Date: 2021-06-15
  • High purity graphite with purity above 99.9%, as an industrial raw material, plays an important role in the high-tech field. The existing physical and chemical methods of graphite purification technology has high cost serious damage to equipment and environment by acid and alkali, and complex processes. Thus the development of an excellent and effective graphite purification technology has become a research hotspot in recent years at home and abroad. A purification method of flaky graphite by arc plasma is established in this paper. The characteristics of high temperature which can be produced quickly by using arc plasma is used to treat the flaky graphite samples with a purity of 94.18% from Jixi City of Heilongjiang Province, under high temperature. The results show that the optimal discharge parameters are air flow rate 25 L/min, current 400 A and power 10 kW. At this point, the surface temperature of the arc plasma is up to 3350 ℃. Scanning electron microscope is used to compare the microstructure of graphite samples before and after arc processing to find the characteristics of shredding and breaking of graphite samples. The graphite purity and impurities are analysed according to national standard chemical analysis method of GB/T 3521 2008. After arc treatment, the purity of graphite is increased to 99.21%.
  • [1]
    李箫波, 魏文赋, 左浩梓, 等. 基于Mo2C晶粒增强的铜/石墨复合材料浸渗特性与优化[J/OL]. 中国电机工程学报, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html.

    Li Xiaobo, Wei Wenfu, Zuo Haozi, et al. Infiltration characteristics and optimization of copper/graphite composite reinforced by Mo2C grain[J/OL]. Proceedings of the CSEE, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html
    [2]
    张谦, 文书明, 丰奇成, 等. 鳞片石墨的提纯工艺研究现状与展望[J]. 硅酸盐通报, 2019, 38(2):392-397. (Zhang Qian, Wen Shuming, Feng Qicheng, et al. Research status and prospect of flake graphite purification technology[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 392-397
    [3]
    Wang Yukun, Gao Shutao, Zang Xiaohuan, et al. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples[J]. Analytica Chimica Acta, 2012, 716: 112-118. doi: 10.1016/j.aca.2011.12.007
    [4]
    袁来敏. 辽宁某鳞片石墨矿浮选工艺试验[J]. 现代矿业, 2013, 29(6):94-96. (Yuan Laimin. The process testing of floatation process of a scale graphite mine in Liaoning province[J]. Modern Mining, 2013, 29(6): 94-96 doi: 10.3969/j.issn.1674-6082.2013.06.033
    [5]
    Li Yufeng, Zhu Shifu, Wang Lei. Purification of natural graphite by microwave assisted acid leaching[J]. Carbon, 2013, 55: 377-378.
    [6]
    赵越, 刘敬党, 张艳飞, 等. 湖南某地隐晶质石墨提纯试验研究[J]. 非金属矿, 2017, 40(6):66-68. (Zhao Yue, Liu Jingdang, Zhang Yanfei, et al. Study on the refine of aphanitic graphite from Hunan[J]. Non-Metallic Mines, 2017, 40(6): 66-68 doi: 10.3969/j.issn.1000-8098.2017.06.021
    [7]
    Adham K, Bowes G. Natural graphite purification through chlorination in fluidized bed reactor[M]//Davis B. Extraction 2018: the Minerals, Metals & Materials Series. Cham: Springer, 2018: 2505-2512.
    [8]
    张向军, 陈斌, 高欣明. 高温石墨化提纯晶质(鳞片)石墨[J]. 炭素技术, 2001(2):39-40. (Zhang Xiangjun, Chen Bin, Gao Xinming. Depuration of scaly graphites by high temperature graphitization[J]. Carbon Techniques, 2001(2): 39-40 doi: 10.3969/j.issn.1001-3741.2001.02.010
    [9]
    李元, 郜晶, 朱光远, 等. 液相等离子体技术制备碳纳米材料的进展与趋势[J]. 中国电机工程学报, 2021, 41(8):2909-2919. (Li Yuan, Gao Jing, Zhu Guangyuan, et al. Advances and trends of carbon nanomaterial synthesis by liquid-plasma processing[J]. Proceedings of the CSEE, 2021, 41(8): 2909-2919
    [10]
    赵莉华, 冀一玮, 尚豪, 等. 正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响[J/OL]. 中国电机工程学报, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html.

    Zhao Lihua, Ji Yiwei, Shang Hao, et al. Propagation mechanism of a positive DC driven atmospheric pressure helium plasma jet: influences of He-air mixing layer[J/OL]. Proceedings of the CSEE, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html
    [11]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [12]
    Fedoseeva Y V, Gorodetskiy D V, Makarova A A, et al. Influence of the temperature of molybdenum substrates on the structure of diamond coatings obtained by chemical vapor deposition from a high-speed microwave plasma jet[J]. Journal of Structural Chemistry, 2021, 62(1): 153-162. doi: 10.1134/S0022476621010182
    [13]
    Hsu M, Sweeney M P, Johnson D L. Thermal effects during microwave plasma sintering of ceramics[J]. MRS Online Proceedings Library, 1990, 189(1): 289-301.
    [14]
    古忠涛, 叶高英, 金玉萍. 射频感应等离子体制备球形钛粉的成分分析[J]. 强激光与粒子束, 2012, 24(6):1409-1413. (Gu Zhongtao, Ye Gaoying, Jin Yuping. Chemical compositions of spherical titanium powders prepared by RF induction plasma[J]. High Power Laser and Particle Beams, 2012, 24(6): 1409-1413 doi: 10.3788/HPLPB20122406.1409
    [15]
    Cao Jin, Matsoukas T. Nanoparticles and nanocomposites in RF plasma[J]. MRS Online Proceedings Library, 2000, 635: C4.12.
    [16]
    钟良, 侯力, 古忠涛. 射频感应等离子体制备球形氧化铝的工艺研究[J]. 强激光与粒子束, 2014, 26:089003. (Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma[J]. High Power Laser and Particle Beams, 2014, 26: 089003 doi: 10.11884/HPLPB201426.089003
    [17]
    Njiki A, Kamgang-Youbi G, Lontsi C D, et al. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain[J]. International Journal of Environmental Science and Technology, 2016, 13(1): 263-274. doi: 10.1007/s13762-015-0867-1
    [18]
    Iya-Sou D, Laminsi S, Cavadias S, et al. Removal of model pollutants in aqueous solution by gliding arc discharge: determination of removal mechanisms. Part I: experimental study[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 97-113. doi: 10.1007/s11090-012-9423-7
    [19]
    Mountapmbeme-Kouotou P, Laminsi S, Acayanka E, et al. Degradation of palm oil refinery wastewaters by non-thermal gliding arc discharge at atmospheric pressure[J]. Environmental Monitoring and Assessment, 2013, 185(7): 5789-5800. doi: 10.1007/s10661-012-2984-3
    [20]
    Kaku S M Y. Evaluation of vacuum arc melted-powder metallurgy Al–ZrB2 composite[M]//Lakshminarayanan A, Idapalapati S, Vasudevan M. Advances in Materials and Metallurgy. Singapore: Springer, 2019: 83-90.
    [21]
    王振廷, 孟君晟. 石墨提纯方法及工艺[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.

    Wang Zhenting, Meng Junsheng. The method and technology of purifying graphite[M]. Harbin: Harbin Institute of Technology Press, 2018
  • Relative Articles

    [1]Huang Ruixian, Xi Chuanyi, Han Liqi, Yu Jinqing, Yu Tongpu, Yan Xueqing. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35(1): 012009. doi: 10.11884/HPLPB202335.220229
    [2]Wang Yancheng, Cao Zongwei, Sun Xiangyang, Luo Wen. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35(9): 091006. doi: 10.11884/HPLPB202335.230079
    [3]Peng Ziyang, Cao Zhengxuan, Gao Ying, Chen Shiyou, Zhao Jiarui, Ma Wenjun. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34(8): 081003. doi: 10.11884/HPLPB202234.220107
    [4]Liu Qinghua, Li Jing, Shan Lijun, Xiao Dexin, Pan Qing, Liu Yu, Wang Hanbin, Hu Dongcai, Zhang Peng, Li Shoutao, Wang Jianxin, Zhang Demin, Yan Longgang, Zhang Xiaoli, Gan Kongyin, Zhang Chengxin, Li Peng, Shen Xuming, Bo Wei, Chen Yunbin, Li Xiaohui, Wang Shuaihua, Yu Yong, Chen Hao, Hu Xiutai, Ma Guowu, Zhou Kui, Zhou Zheng, Wang Yuan, Yang Xingfan, Wu Dai, Li Ming, Chen Menxue, Hu Jinguang, Zhao Jianheng, Fan Guobin. High-energy CT system with 10 lp/mm spatial resolution[J]. High Power Laser and Particle Beams, 2022, 34(12): 124001. doi: 10.11884/HPLPB202234.220322
    [5]Li Peng, Wang Jianxing, Xiao Dexin, Zhou Zheng, Zhou Kui, Li Shigen, Lao Chenglong, Shen Xuming, Yang Longang, Liu Yu, Liu Jie, Hu Dongcai, Wu Dai, Yang Xingfan, Li Ming. Verification experiment of micro focus X-ray source with energy 9 MeV and beam size less than 0.1 mm[J]. High Power Laser and Particle Beams, 2020, 32(5): 054001. doi: 10.11884/HPLPB202032.200086
    [6]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [7]Li Qin, Wang Yi, Li Chenggang, Li Hong, Qi Shuangxi, Liu Yunlong, Cheng Jinming, Li Tiantao, Long Quanhong. High energy X-ray spot size measurement with rollbar[J]. High Power Laser and Particle Beams, 2016, 28(04): 045106. doi: 10.11884/HPLPB201628.125106
    [8]Li Ling, Gao Fuqiang, Zhou Qin, Yan Qiang, Cai Yufang. Cupping artifact correction for low-energy X-ray industrial CT images[J]. High Power Laser and Particle Beams, 2014, 26(05): 059004. doi: 10.11884/HPLPB201426.059004
    [9]Zhou Qin, Gao Fuqiang, Chen Danqing, Chen Shengfei. Design of small interval signal acquisition system for low-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2013, 25(01): 114-118. doi: 10.3788/HPLPB20132501.0114
    [10]ou long, hu dongcai, chen hao, wang yuan, xu zhou. Design of embedded synchronization system for high energy industry CT based on FPGA[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]li chenggang, deng jianjun, shi jinshui, li qin, jiang xiaoguo, wang yuan, zhang kaizhi, li jin, zhang linwen. Time-resolved spot size diagnosis for high-energy X-ray source[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [12]duan li-ming, liao ping, zhang ping, li sheng-e. Design of data transmission system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [13]duan li-ming, liao ping. Design of scanning motion control system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [14]hu guang-yue, liu shen-ye, zhang ji-yan, yang jia-min, ding yong-kun, hu xin, huang yi-xiang, du hua-bing, yi rong-qing, zheng jian. Emission characteristic of long laser pulse keV X-ray source[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [15]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye, zhu jing-tao, zhao yi-dong, cui ming-qi. Reflectivity calibration of soft X-ray multilayer mirror in Beijing Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [16]liu yuan-qiong, gao dang-zhong, liu li-xiang, luo qing, ye cheng-gang. Phase-contrast imaging with micro-focus X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [17]tian you-wei, yu wei, lu pei-xiang, he feng, ma fa-jun, xu han, qian lie-jia. Laser synchrotron radiation as attosecond X-ray source[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [18]chen hao, xu zhou, jin xiao, li ming, shan li jun, lu he ping, yang xing fan, deng ren pei, zhang zhi fu, liu xi san. Spot size measurement of new type Xray source designed for high energy industrial CT[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]guo wei, gu jia hui, cai xiang zhou, shen wen qing. Preliminary discussion of laser synchrotron source construction[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]yang jiamin, yi rongqing, chen zhenlin, sun kexu, li chaoguang, ding yaonan, zheng zhijian, cui mingqi, zhu peiping, cui congwu. EXPERIMENTAL CALIBRATION OF RESPONSE CURVES FOR SOFT X-RAY FILM 5FW ON SYNCHROTRON RADIATION[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 童维超,蒋柏斌,吴小军,李国,黄燕华,张春雨,马小军. 基于圆弧刀补偿加工的平面调制切削技术研究. 四川大学学报(自然科学版). 2024(02): 127-132 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 69.7 %META: 69.7 %PDF: 6.2 %PDF: 6.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.9 %其他: 0.9 %Canton: 0.4 %Canton: 0.4 %China: 0.9 %China: 0.9 %Germany: 0.4 %Germany: 0.4 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Japan: 0.1 %Japan: 0.1 %Pontevedra: 0.2 %Pontevedra: 0.2 %Romania: 0.1 %Romania: 0.1 %Taoyuan District: 0.2 %Taoyuan District: 0.2 %United Kingdom: 0.8 %United Kingdom: 0.8 %United States: 0.2 %United States: 0.2 %[]: 1.2 %[]: 1.2 %三明: 0.1 %三明: 0.1 %上海: 2.0 %上海: 2.0 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.4 %丽水: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %光州: 0.2 %光州: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 7.0 %北京: 7.0 %南京: 0.2 %南京: 0.2 %南昌: 0.8 %南昌: 0.8 %卡利亚里: 0.2 %卡利亚里: 0.2 %卡尔斯鲁厄: 0.4 %卡尔斯鲁厄: 0.4 %台州: 1.1 %台州: 1.1 %台湾省: 0.3 %台湾省: 0.3 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣何塞: 0.2 %圣何塞: 0.2 %圣克拉拉: 0.3 %圣克拉拉: 0.3 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大连: 0.4 %大连: 0.4 %天津: 0.3 %天津: 0.3 %安顺: 0.1 %安顺: 0.1 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.3 %密蘇里城: 0.3 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %庆阳: 0.1 %庆阳: 0.1 %张家口: 0.5 %张家口: 0.5 %张掖: 0.1 %张掖: 0.1 %徐州: 0.1 %徐州: 0.1 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %梅州: 0.1 %梅州: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %滁州: 0.1 %滁州: 0.1 %漯河: 0.6 %漯河: 0.6 %烟台: 0.1 %烟台: 0.1 %益阳: 0.1 %益阳: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.2 %米兰: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.6 %绵阳: 0.6 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 23.3 %芒廷维尤: 23.3 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.4 %莫斯科: 0.4 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.0 %衢州: 1.0 %西宁: 33.2 %西宁: 33.2 %西安: 0.7 %西安: 0.7 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.0 %运城: 1.0 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 0.8 %重庆: 0.8 %金华: 0.3 %金华: 0.3 %长春: 0.4 %长春: 0.4 %长沙: 0.7 %长沙: 0.7 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %雅安: 0.2 %雅安: 0.2 %青岛: 0.7 %青岛: 0.7 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %黔西南: 0.1 %黔西南: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他CantonChinaGermanyIndiaIran (ISLAMIC Republic Of)JapanPontevedraRomaniaTaoyuan DistrictUnited KingdomUnited States[]三明上海东莞中山临汾临沂丹东丽水佛山保定光州兰州北京南京南昌卡利亚里卡尔斯鲁厄台州台湾省合肥哈尔滨嘉兴圣何塞圣克拉拉圣彼得堡大连天津安顺宣城密蘇里城常州广州庆阳张家口张掖徐州德黑兰成都扬州新乡无锡昆明普洱杭州梅州武汉沈阳泉州洛阳深圳温州湖州滁州漯河烟台益阳石嘴山石家庄福州秦皇岛米兰纽约绵阳美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长春长沙长治阳泉雅安青岛香港特别行政区黔西南龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views (1223) PDF downloads(62) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return