Volume 33 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Liu Zeyang, Li Sirui, Fan Yuwei, et al. Efficiency enhancement of L-band relativistic magnetron with endcaps[J]. High Power Laser and Particle Beams, 2021, 33: 073006. doi: 10.11884/HPLPB202133.210119
Citation: Liu Zeyang, Li Sirui, Fan Yuwei, et al. Efficiency enhancement of L-band relativistic magnetron with endcaps[J]. High Power Laser and Particle Beams, 2021, 33: 073006. doi: 10.11884/HPLPB202133.210119

Efficiency enhancement of L-band relativistic magnetron with endcaps

doi: 10.11884/HPLPB202133.210119
Funds:  National Natural Science Foundation of China (61671457, 61871390); Hunan Provincial Innovation Foundation for Postgraduate (CX2016B030)
More Information
  • Author Bio:

    Liu Zeyang (1995—), male, master degree candidate, teaching assistant, engaged in high power microwave research

  • Corresponding author: Fan Yuwei(1972—), male, PhD, professor, engaged in high power microwave research
  • Received Date: 2021-03-29
  • Rev Recd Date: 2021-06-02
  • Available Online: 2021-06-25
  • Publish Date: 2021-07-15
  • An L-band relativistic magnetron with cathode endcaps is presented and investigated numerically. Cathode endcaps are introduced in the relativistic magnetron to decrease the axial leakage current and enhance the power efficiency. Three-dimensional particle-in-cell simulations are carried out to investigate the effects of the cathode endcaps. The simulation results indicate that when adding cathode endcaps at both upstream and downstream of the interaction space and extending cathode beyond the anode block into the diffraction output (DO), electron leakage current is reduced from above 1 kA to 72 A and the power efficiency increases obviously. The endcaps can not only decrease the leakage current but also bring microwave reflection. Thus, the radius and the location of the endcaps have significant impact on power efficiency, and they have optimum values to make the efficiency highest. Typical optimized simulation results are as follows: working at an applied voltage of 563 kV and a magnetic field of 0.34 T, the relativistic magnetron with diffraction output (MDO) radiates microwave of 2.13 GW at 1.59 GHz, and the corresponding power conversion efficiency is 75.5%.
  • loading
  • [1]
    Kovalev N F, Kolchugin B D, Nechaev V E, et al. Relativistic magnetron with diffraction coupling[J]. Technical Physics Letters, 1977, 3: 430-433.
    [2]
    Daimon M, Jiang W. Modified configuration of relativistic magnetron with diffraction output for efficiency improvement[J]. Applied Physics Letters, 2007, 91: 191503. doi: 10.1063/1.2803757
    [3]
    Li Wei, Liu Yonggui. An efficient mode conversion configuration in relativistic magnetron with axial diffraction output[J]. Journal of Applied Physics, 2009, 106: 053303. doi: 10.1063/1.3211323
    [4]
    Price D, Levine J S, Benford J. Diode plasma effects on the microwave pulse length from relativistic magnetrons[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 348-353. doi: 10.1109/27.700765
    [5]
    Leach C, Prasad S, Fuks M I, et al. Compact relativistic magnetron with Gaussian radiation pattern[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3116-3120. doi: 10.1109/TPS.2012.2212910
    [6]
    Saveliev Y M, Spark S N, Kerr B A, et al. Effect of cathode end caps and a cathode emissive surface on relativistic magnetron operation[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 478-484. doi: 10.1109/27.887651
    [7]
    Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
    [8]
    Kesari V, Keshari J P. Analysis of a circular waveguide loaded with dielectric and metal discs[J]. Progress in Electromagnetics Research, 2011, 111: 253-269. doi: 10.2528/PIER10110207
    [9]
    Leopold J G, Shlapakovski A S, Sayapin A, et al. Revisiting power flow and pulse shortening in a relativistic magnetron[J]. IEEE Transactions on Plasma Science, 2015, 43(9): 3168-3175. doi: 10.1109/TPS.2015.2463717
    [10]
    Fan Yuwei, Liu Jing, Zhong Huihuang, et al. Theoretical investigation of the fundamental mode frequency of A6 magnetron[J]. Journal of Applied Physics, 2009, 105: 083310. doi: 10.1063/1.3116202
    [11]
    Wang Xiaoyu, Fan Yuwei, Shu Ting, et al. Theoretical investigation of the dielectric-filled relativistic magnetron[J]. Physics of Plasmas, 2016, 23: 013108. doi: 10.1063/1.4939705
    [12]
    Wang Xiaoyu, Fan Yuwei, Shi Difu, et al. A high-efficiency relativistic magnetron with the filled dielectric[J]. Physics of Plasmas, 2016, 23: 073103. doi: 10.1063/1.4956460
    [13]
    Liu Meiqin, Fuks M I, Schamiloglu E, et al. Operation characteristics of A6 relativistic magnetron using single-stepped cavities with axial extraction[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3344-3348. doi: 10.1109/TPS.2014.2352353
    [14]
    Li Sirui, Fan Yuwei, Wang Xiaoyu. An L-band relativistic magnetron with cathode priming[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 204-208. doi: 10.1109/TPS.2018.2881174
    [15]
    Liu Zeyang, Fan Yuwei, Wang Xiaoyu, et al. A high-efficiency relativistic magnetron with a novel all-cavity extraction structure[J]. AIP Advances, 2020, 10: 035104. doi: 10.1063/1.5102151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (1023) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return