Liu Jiao, Yan Liping, Li Bin, et al. Artificial neural network modeling of component nonlinear behavior and application in conducted interference analysis[J]. High Power Laser and Particle Beams, 2015, 27: 103212. doi: 10.11884/HPLPB201527.103212
Citation: Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33: 073003. doi: 10.11884/HPLPB202133.210124

Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode

doi: 10.11884/HPLPB202133.210124
  • Received Date: 2021-03-31
  • Rev Recd Date: 2021-06-06
  • Available Online: 2021-06-29
  • Publish Date: 2021-07-15
  • A relativistic magnetron with online switchable rotation direction of a circularly polarized TE11 output mode is proposed. In the device, the same cavity magnetron is adopted as the beam-wave interaction structure, the all-cavity extraction structure is adopted as the output structure, and the Helmholtz coils system is adopted as the magnetic system. In this paper, the output mode components of the device are theoretically analyzed by the mode excitation theory of all-cavity extraction structure, and the performance of the device is investigated by Particle in Cell simulation. Simulation results show that when the applied voltage is 770 kV and the applied magnetic field that has the same direction with the output microwave is 0.2 T, the device that operates at 5π/6 mode can output a right circularly polarized TE11 mode with the mode purity of more than 99%, the operating frequency of 2.35 GHz and the output power of 3.86 GW, corresponding to the power conversion efficiencyof 55.5%. When the direction of the applied magnetic field is reversed, the rotation direction of the right circularly polarized TE11 mode can be online switched to the left in the condition of keeping other performance of the device.
  • [1]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. London: Taylor & Francis, 2007.
    [2]
    Peng Shengren, Yuan Chengwei, Shu Ting, et al. Design of a concentric array radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3527-3529. doi: 10.1109/TPS.2015.2392097
    [3]
    Yuan Chengwei, Peng Shengren, Shu Ting, et al. Designs and experiments of a novel radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 4940-4946. doi: 10.1109/TAP.2013.2273214
    [4]
    Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
    [5]
    Li Tianming, Li Jiayin, Hu Biao. Studies of the frequency-agile relativistic magnetron[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1344-1349. doi: 10.1109/TPS.2012.2189025
    [6]
    Li Wei, Liu Yonggui, Zhang Jun, et al. Experimental investigations on the relations between configurations and radiation patterns of a relativistic magnetron with diffraction output[J]. Journal of Applied Physics, 2013, 113: 023304. doi: 10.1063/1.4774245
    [7]
    Liu Meiqin, Liu Chunliang, Fuks M I, et al. Operation characteristics of 12-cavity relativistic magnetron with single-stepped cavities[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3283-3287. doi: 10.1109/TPS.2014.2311458
    [8]
    Shi Difu, Qian Baoliang, Wang Honggang, et al. A novel TE11 mode axial output structure for a compact relativistic magnetron[J]. Journal of Physics D: Applied Physics, 2016, 49: 135103. doi: 10.1088/0022-3727/49/13/135103
    [9]
    Shi Difu, Qian Baoliang, Wang Honggang, et al. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode[J]. Journal of Physics D: Applied Physics, 2016, 49: 465104. doi: 10.1088/0022-3727/49/46/465104
    [10]
    Shi Difu, Qian Baoliang, Wang Honggang, et al. Theoretical investigations on radiation generation of TEM, linearly or circularly polarized TEn1 coaxial waveguide mode in relativistic magnetron[J]. Scientific Reports, 2017, 7: 1491. doi: 10.1038/s41598-017-01583-w
    [11]
    Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477
    [12]
    Hoff B W, Greenwood A D, Mardahl P J, et al. All cavity-magnetron axial extraction technique[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3046-3051. doi: 10.1109/TPS.2012.2217758
    [13]
    Zhang Dian, Zhang Jun, Zhong Huihuang, et al. Analysis of the mode composition of an X-band overmoded O-type Cerenkov high-power microwave oscillator[J]. Physics of Plasmas, 2012, 19: 103102. doi: 10.1063/1.4757636
    [14]
    Zhang Dian, Zhang Jun, Zhong Huihuang, et al. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator[J]. Physics of Plasmas, 2014, 21: 093102. doi: 10.1063/1.4894480
  • Relative Articles

    [1]Wang Naizhi, Wu Hongchao, Wang Kan. Fast leading-edge pulse emission and spatial combination of solid-state active phased array[J]. High Power Laser and Particle Beams, 2023, 35(5): 053003. doi: 10.11884/HPLPB202335.220338
    [2]Wu Zhe, Guan Xianghe, Ji Lailin, Hua Yilin, Gao Yanqi, Sui Zhan, Chen Huacai. Research on multi-pass amplification characteristics of Yb:CNGG active mirror[J]. High Power Laser and Particle Beams, 2023, 35(3): 031003. doi: 10.11884/HPLPB202335.220261
    [3]Wang Sihao, Liao Cheng, Shang Yuping, Zhang Runwu. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33(4): 043002. doi: 10.11884/HPLPB202133.200331
    [4]WANG Liandong. Introduction for Special Issue[J]. High Power Laser and Particle Beams, 2019, 31(10): 103200.
    [5]Que Weiyan. Cognitive operations and intelligentizing characterization for battlefield electromagnetic operational environment[J]. High Power Laser and Particle Beams, 2018, 30(4): 043201. doi: 10.11884/HPLPB201830.170377
    [6]Que Weiyan. Concept analysis of electromagnetic operational environment[J]. High Power Laser and Particle Beams, 2017, 29(11): 113206. doi: 10.11884/HPLPB201729.170272
    [7]Wang Yuan, Jiang Xiaoguo, Zhang Xiaoding, Li Yiding, Yang Guojun, Li Jin. Compatibility design for instantaneous electron beam parameters measurement system under complex electromagnetism interference[J]. High Power Laser and Particle Beams, 2017, 29(11): 113205. doi: 10.11884/HPLPB201729.170154
    [8]Lin Aoxiang, Tang Xuan, Zhan Huan, Li Qi, Wang Yuying, Peng Kun, Ni Li, Wang Xiaolong, Gao Cong, You Yunfeng, Jia Zhaonian, Li Yuwei, You A’ni, Lin Honghuan, Wang Jianjun, Jing Feng. 国产有源光纤成功实现6 kW激光输出[J]. High Power Laser and Particle Beams, 2016, 28(12): 129901. doi: 10.11884/HPLPB201628.160490
    [9]Du Xin, Xie Shuguo, Hao Xuchun, Wang Chao. An electromagnetic interference source imaging algorithm of multi-resolution partitions[J]. High Power Laser and Particle Beams, 2015, 27(10): 103223. doi: 10.11884/HPLPB201527.103223
    [10]Wang Bo, Li Yudong, Guo Qi, Wen Lin, Sun Jing, Wang Fan, Zhang Xingyao, Ma Liya. Neutron irradiation induced displacement damage effects on CMOS active pixel image sensor[J]. High Power Laser and Particle Beams, 2015, 27(09): 094001. doi: 10.11884/HPLPB201527.094001
    [11]He Yong, Song Shengyi, Guan Yongchao, Cheng Cheng, Gao Guishan, Li Yexun, Qiu Xu. Quantitative expression of sliding contact resistance between armature and rail in railgun[J]. High Power Laser and Particle Beams, 2014, 26(04): 045007. doi: 10.11884/HPLPB201426.045007
    [12]wang haiyang, zhou yihong, li jiayin, xu ligang, yu xiuyun. LNA malfunctions under intentional electromagnetic interference[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]niu zhifeng, guo jianzeng, ren xiaoming, wang zhenhua. Numerical simulation of large aspect ratio rectangle resonators[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]wang zhiqun, yao shun, cui bifeng, wang zhiyong, shen guangdi. Steady state thermal analysis of multi-active zone tunnel regeneration semiconductor laser[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [15]feng chen, feng guoying, huang yu, li wei, li gang, zhang qiuhui. Misalignment analysis of an active resonator using eigenvector method[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- .
    [16]xu mei-jian, yu hai-wu, duan wen-tao, jiang xin-ying, yuan xiao-dong, lin dong-hui, wei xiao-feng. Output performance of solid state heat capacity laser with ctiv-mirror and dichromatic coatings[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [17]yu dao-jie, niu zhong-xia, yang jian-hong, mo you-quan, zhou dong-fang, hu tao. Characteristics of active lens antenna based on plasma[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
    [18]xie yan-zhao, sun bei-yun, zhou hui-, wang zan-ji, wang qun-shu, . High-altitude electromagnetic pulse environment over the lossy ground[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
    [19]xiao xiao-guang, hu ke-song, li zheng-hong, li ming. Description of electrons motion in an alpha magnet[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
  • Cited by

    Periodical cited type(4)

    1. 黄璐莹,陈润丰,石亮,徐逸凡. 基于软件无线电平台的电磁信号数据表征方法. 移动通信. 2022(02): 95-100 .
    2. 陈鑫,邱扬,田锦,左江江,陆希成,杨春,徐亮,赵仁仲. 基于试验结果的电磁兼容性量化表征技术研究. 强激光与粒子束. 2021(12): 76-83 . 本站查看
    3. 沈飞,李争,许雄,李林,樊玉琦,周红平,郭凯,郭忠义. 面向雷达对抗的电磁态势认知问题研究. 强激光与粒子束. 2019(09): 74-78 . 本站查看
    4. 许雄,吴若无,韩慧,郝晓军,王华兵,曾勇虎,汪连栋. 雷达信号环境测量系统的设计与测试. 强激光与粒子束. 2019(10): 41-45 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.3 %FULLTEXT: 22.3 %META: 74.9 %META: 74.9 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 0.1 %其他: 0.1 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %[]: 0.1 %[]: 0.1 %上海: 2.8 %上海: 2.8 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %北京: 15.2 %北京: 15.2 %十堰: 0.5 %十堰: 0.5 %南京: 1.1 %南京: 1.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.8 %天津: 0.8 %宣城: 0.5 %宣城: 0.5 %密蘇里城: 0.6 %密蘇里城: 0.6 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.1 %张家口: 0.1 %成都: 0.5 %成都: 0.5 %扬州: 0.4 %扬州: 0.4 %新乡: 0.1 %新乡: 0.1 %昆明: 0.4 %昆明: 0.4 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %深圳: 0.1 %深圳: 0.1 %温州: 0.4 %温州: 0.4 %渭南: 0.1 %渭南: 0.1 %漯河: 1.8 %漯河: 1.8 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 18.2 %芒廷维尤: 18.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %蒙哥马利: 0.3 %蒙哥马利: 0.3 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 37.6 %西宁: 37.6 %西安: 0.6 %西安: 0.6 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.3 %运城: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.5 %青岛: 0.5 %韩国大邱: 0.1 %韩国大邱: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他ChinaIndiaTaiwan, China[]上海中山临汾丹东丽水北京十堰南京南昌南通台州合肥哈尔滨哥伦布唐山嘉兴天津宣城密蘇里城常州广州张家口成都扬州新乡昆明晋城普洱杭州武汉沈阳济南深圳温州渭南漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州蒙哥马利衡水衡阳衢州西宁西安西雅图贵阳运城邯郸郑州重庆长沙长治阳泉青岛韩国大邱马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article views (984) PDF downloads(60) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return