Volume 33 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Tan Fang, Yang Qiang, Huo Muyi, et al. Structural design and properties study of rectangular lattice high polarization low-loss-Bi-Ge-Ga photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33: 101002. doi: 10.11884/HPLPB202133.210128
Citation: Tan Fang, Yang Qiang, Huo Muyi, et al. Structural design and properties study of rectangular lattice high polarization low-loss-Bi-Ge-Ga photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33: 101002. doi: 10.11884/HPLPB202133.210128

Structural design and properties study of rectangular lattice high polarization low-loss-Bi-Ge-Ga photonic crystal fiber

doi: 10.11884/HPLPB202133.210128
  • Received Date: 2021-04-02
  • Rev Recd Date: 2021-09-15
  • Available Online: 2021-10-08
  • Publish Date: 2021-10-15
  • Asymmetric structure photonic crystal fibers are widely used. Its good polarization characteristics, flexible dispersion control ability and low limit loss quality play a key role in regulating and improving the performance of polarization fiber devices, nonlinear optical fibers, optical communication fibers, and fiber sensors. In this paper, high refractive index bismuth-germanium-gallium laser glass material is used and a photonic crystal fiber with an octagonal array and a rectangular lattice arrangement structure is designed. The core defect area cladding and outer cladding are all circular air holes. The simulation experiment data show that when the structural parameter M=0.5 and 0.6, the birefringence coefficients at the wavelength of 1.55 μm are 1.16×10−2 and 1.33×10−2, respectively; In the short-wave region of the near-infrared band, the dispersion range of rectangular lattice photonic crystal fiber is ±30 ps·nm−1·km−1 and −18−32 ps·nm−1·km−1, respectively. The dispersion slope is low. The dispersion curve has a zero dispersion point, which demonstrates good continuous spectrum control ability; When M=0.5, 0.6, in the band of 1.00−1.90 μm, the limit loss keeps in 10−7−10−9 dB·km−1 stably; At the wavelength of 1.55 μm, the limit loss are 2.32×10−7 and 1.62×10−8 dB·km−1, respectively.
  • loading
  • [1]
    贾彩萍, 王春灿. 高功率超连续光谱的光纤产生技术[J]. 光通信技术, 2020, 44(10):42-46. (Jia Caiping, Wang Chuncan. High power supercontinuum with fiber generation technology[J]. Optical Communication Technology, 2020, 44(10): 42-46
    [2]
    刘海, 陈灿灿, 张文, 等. 基于光子晶体光纤四波混频效应的甲烷传感测量[J]. 激光与光电子学进展, 2020, 57: 191203

    Liu Hai, Chen Cancan, Zhang Wen, et al. Methane sensing measurement based on photonic crystal fiber four-wave mixing effect[J]. Laser & Optoelectronics Progress,2020, 57: 191203
    [3]
    楚秋慧, 郭超, 颜冬林, 等. 高功率窄线宽光纤激光器的研究进展[J]. 强激光与粒子束, 2020, 32: 121004

    Chu Qiuhui, Guo Chao, Yan Donglin, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 121004
    [4]
    杨军, 苑勇贵, 喻张俊, 等. 光纤偏振器件与组件的分布式串音测量研究进展[J]. 光电工程, 2018, 45:170625. (Yang Jun, Yuan Yonggui, Yu Zhangjun, et al. Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device[J]. Opto-Electronic Engineering, 2018, 45: 170625
    [5]
    尚克军, 雷明, 向强, 等. 一种基于集成光学芯片的微小型光纤陀螺[J]. 中国惯性技术学报, 2020, 28(5):650-653. (Shang Kejun, Lei Ming, Xiang Qiang, et al. An integrated optical chip based miniature fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2020, 28(5): 650-653
    [6]
    王锦丽, 钟春晓, 任喜梅, 等. 小损耗介质中非相干耦合光束的传输特性[J]. 量子电子学报, 2021, 38(1):10-16. (Wang Jinli, Zhong Chunxiao, Ren Ximei, et al. Propagation characteristics of incoherently coupled beams in low loss media[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 10-16
    [7]
    丁思明, 杨四刚, 杨益, 等. 高非线性光子晶体光纤中的声光相互作用[J]. 中国激光, 2019, 46:0508027. (Ding Siming, Yang Sigang, Yang Yi, et al. Interaction of acoustic phonons and photons in highly nonlinear photonic crystal fibers[J]. Chinese Journal of Lasers, 2019, 46: 0508027 doi: 10.3788/CJL201946.0508027
    [8]
    赵兴涛, 华露, 蒋国辉, 等. 多孔芯光子晶体光纤及其偏振特性[J]. 发光学报, 2018, 39(5):706-712. (Zhao Xingtao, Hua Lu, Jiang Guohui, et al. Polarization properties of multi-hole core photonic crystal fiber[J]. Chinese Journal of Luminescence, 2018, 39(5): 706-712 doi: 10.3788/fgxb20183905.0706
    [9]
    薛璐, 张亚妮, 朱雨雨, 等. 超低损耗低非线性平坦色散光子晶体光纤优化设计[J]. 光子学报, 2018, 47:1106005. (Xue Lu, Zhang Yani, Zhu Yuyu, et al. Optimization design of ultra-low loss low nonlinear flatten dispersion photonic crystal fiber[J]. Acta Photonica Sinica, 2018, 47: 1106005 doi: 10.3788/gzxb20184711.1106005
    [10]
    赵原源. 光子晶体光纤色散和非线性效应的理论和实验研究[J]. 电子元器件与信息技术, 2020, 4(8):7-9. (Zhao Yuanyuan. Theoretical and experimental study on dispersion and nonlinear effects of photonic crystal fibers[J]. Electronic Component and Information Technology, 2020, 4(8): 7-9
    [11]
    刘旭安, 吴根柱, 陈达如, 等. 基于椭圆孔包层和微型双孔纤芯的新型高双折射光子晶体光纤[J]. 光子学报, 2011, 40(11):1728-1732. (Liu Xu’an, Wu Genzhu, Chen Daru, et al. Novel highly bireferingent photonic crystal fiber based on an elliptical hole fiber cladding and a fiber core of double-micro-hole units[J]. Acta Photonica Sinica, 2011, 40(11): 1728-1732 doi: 10.3788/gzxb20114011.1728
    [12]
    廖昆, 廖健飞, 李伯勋, 等. 一种高双折射双零色散的缺陷型光子晶体光纤[J]. 量子电子学报, 2019, 36(1):123-128. (Liao Kun, Liao Jianfei, Li Boxun, et al. A kind of defect photonic crystal fiber with high birefringence and two zero-dispersion[J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 123-128
    [13]
    张怡, 葛海波, 吴昊, 等. 一种高双折射低损耗椭圆双芯光子晶体光纤的特性分析[J]. 光通信技术, 2020, 44(5):13-17. (Zhang Yi, Ge Haibo, Wu Hao, et al. Characteristic analysis of an elliptic double core photonic crystal fiber with high birefringence and low loss[J]. Optical Communication Technology, 2020, 44(5): 13-17
    [14]
    Yang Tianyu, Ding Can, Guo Y J. A highly birefringent and nonlinear AsSe2–As2S5 photonic crystal fiber with two zero-dispersion wavelengths[J]. IEEE Photonics Journal, 2019, 11: 7200307.
    [15]
    Monir M K, Hasan M, Paul B K, et al. High birefringent, low loss and flattened dispersion asymmetric slotted core-based photonic crystal fiber in THz regime[J]. International Journal of Modern Physics B, 2019, 33: 1950218. doi: 10.1142/S0217979219502187
    [16]
    张学典, 聂富坤, 逯兴莲, 等. 基于正四边形晶格的微结构光子晶体光纤的特性分析[J]. 光学仪器, 2017, 39(4):18-24. (Zhang Xuedian, Nie Fukun, Lu Xinglian, et al. The characteristic analysis of microstructure photonic crystal fibers based on regular quadrilateral lattice[J]. Optical Instruments, 2017, 39(4): 18-24
    [17]
    杨天宇, 姜海明, 王二垒, 等. 一种近红外波段的高双折射高非线性光子晶体光纤[J]. 红外与毫米波学报, 2016, 35(3):350-354. (Yang Tianyu, Jiang Haiming, Wang Erlei, et al. Photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 350-354 doi: 10.11972/j.issn.1001-9014.2016.03.016
    [18]
    许强, 赵亚, 刘思聪, 等. 一种新结构高负色散光子晶体光纤[J]. 量子电子学报, 2018, 35(3):332-337. (Xu Qiang, Zhao Ya, Liu Sicong, et al. A novel photonic crystal fiber with high negative dispersion[J]. Chinese Journal of Quantum Electronics, 2018, 35(3): 332-337
    [19]
    Song Xiangyang, Jin Danyang, Zhou Dechun, et al. Er3+/Yb3+ co-doped bismuthate glass and its large-mode-area double-cladding fiber for 1.53 μm laser[J]. Journal of Alloys and Compounds, 2021, 853: 157305. doi: 10.1016/j.jallcom.2020.157305
    [20]
    王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真[M]. 北京: 电子工业出版社, 2012

    Wang Gang, An Lin. COMSOL Multiphysics engineering practice and theory simulation[M]. Beijing: Electronic Industry Press, 2012
    [21]
    汪成程, 张峰, 吴根柱. 渐近式太赫兹多孔光子晶体光纤模式特性研究[J]. 激光技术, 2019, 43(6):768-772. (Wang Chengcheng, Zhang Feng, Wu Genzhu. Study on mode characteristics of asymptotic terahertz porous photonic crystal fibers[J]. Laser Technology, 2019, 43(6): 768-772
    [22]
    陈波, 杨广强, 张霞. 光子晶体光纤色散特性的理论研究[J]. 测试技术, 2019, 9(4):80-85. (Chen Bo, Yang Guangqiang, Zhang Xia. Theoretical study on dispersion characteristics of photonic crystal fiber[J]. Testing Technology, 2019, 9(4): 80-85
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (757) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return